繁簡切換您正在訪問的是FX168財經網,本網站所提供的內容及信息均遵守中華人民共和國香港特別行政區當地法律法規。

FX168财经网>人物频道>帖子

计量经济学作业——barr模型初探

作者/fx1118 2019-05-10 06:54 0 来源: FX168财经网人物频道

完成人——西财2016级证券与期货学院计量小组

from jqdata import *
from jqfactor import winsorize_med
from jqfactor import standardlize
import pandas as pd
import numpy as np
from scipy.stats import mstats
from scipy import stats
import datetime as dt
from pandas import Series
from pandas import DataFrame
import matplotlib as mpl
import matplotlib.pyplot as plt
from jqfactor import get_factor_values
import statsmodels.api as sm
import statsmodels.tsa.stattools as ts
s = get_industries(name="sw_l1")
#因子共线性
trading_dates = get_trade_days('2014-04-01','2018-10-11')
num = int(len(trading_dates)/5)
for i in range(1):
    trdy = trading_dates[i*5]
    t1 = get_trade_days(trdy-dt.timedelta(30),trdy)[0]
    t2 = get_trade_days(trdy-dt.timedelta(180),trdy)[0]
    trdy0 = get_trade_days(trdy,trdy+dt.timedelta(7))[-1]

    stocks = get_index_stocks('000300.XSHG')
    prr = get_price(stocks, start_date=t1, end_date=trdy, frequency='daily', fields='close', skip_paused=False, fq='pre')
    pr = (prr.major_xs(trdy)-prr.major_xs(t1))/prr.major_xs(t1)
    prr = get_price(stocks, start_date=t2, end_date=trdy, frequency='daily', fields='close', skip_paused=False, fq='pre')
    pr['long'] =  (prr.major_xs(trdy)-prr.major_xs(t2))/prr.major_xs(t2)
    pr.rename(columns={'close':'short'}, inplace = True)

    dend = get_fundamentals(query(
              valuation.code, 
        valuation.market_cap,
        valuation.pb_ratio,
        valuation.pe_ratio,
        valuation.pcf_ratio,
          ).filter(
              # 这里不能使用 in 操作, 要使用in_()函数
              valuation.code.in_(stocks)
          ), date=trdy)
    dend = pd.merge(dend,pr,left_on='code',right_index=True)
    dend.index = dend['code']
    del dend['code']
    dend['market_cap'] = np.log(dend['market_cap'])

    list = ['operating_revenue_growth_rate','net_profit_growth_rate',
            'Variance20','Variance60','Variance120',
            'VOL20','VOL60','VOL120']
    dend1 = get_factor_values(securities=stocks, factors=list, start_date=trdy, end_date=trdy)
    for i in list:
        dend3 = dend1[i].T
        dend3.columns = [i]
        dend = pd.merge(dend,dend3,left_index=True,right_index=True)

    for i in dend.columns:
        md = dend[i].median()
        mad = ((dend[i] - md).abs()).median()
        minn = md-mad
        maxx = md+mad
        dend[i][dend[i]>maxx] = maxx
        dend[i][dend[i]<minn] = minn
        dend[i] = (dend[i] - dend[i].mean())/dend[i].std()


    dend['val'] = (dend['pb_ratio'] + dend['pe_ratio'] +dend['pcf_ratio'])/3
    dend['vol'] = (dend['Variance20']+dend['Variance60']+dend['Variance120'])/3
    dend['liquid'] = (dend['VOL20']+dend['VOL60']+dend['VOL120'])/3
    dend['grow'] = (dend['operating_revenue_growth_rate']+dend['net_profit_growth_rate'])/2
    del dend['pb_ratio']
    del dend['pe_ratio']
    del dend['pcf_ratio']
    del dend['Variance20']
    del dend['Variance60']
    del dend['Variance120']
    del dend['VOL20']
    del dend['VOL60']
    del dend['VOL120']
    del dend['operating_revenue_growth_rate']
    del dend['net_profit_growth_rate']

    dendf = get_fundamentals(query(
              valuation.code, 
        valuation.market_cap,
          ).filter(
              # 这里不能使用 in 操作, 要使用in_()函数
              valuation.code.in_(stocks)
          ), date=trdy)
    dendf['weight'] = np.sqrt(dendf['market_cap'])
    dendf.index = dendf['code']
    del dendf['code']
    del dendf['market_cap']
    dend = pd.merge(dend,dendf,left_index=True,right_index=True)
    price = get_price(stocks, start_date=trdy, end_date=trdy0, frequency='daily', fields='close', skip_paused=False, fq='pre')
    price1 = price.major_xs(trdy)
    price2 = price.major_xs(trdy0)
    retu = (price2 - price1)/price1
    retu.rename(columns={'close':'retu'}, inplace = True)
    dend = pd.merge(dend,retu,left_index=True,right_index=True)

    dend['market_cap'] = dend['market_cap']*dend['weight']
    dend['short'] = dend['weight']*dend['short'] 
    dend['long'] = dend['weight']*dend['long'] 
    dend['val'] = dend['weight']*dend['val'] 
    dend['vol'] = dend['weight']*dend['vol'] 
    dend['grow'] = dend['weight']*dend['grow'] 
    dend['liquid'] = dend['weight']*dend['liquid'] 
    dend['retu'] = dend['weight']*dend['retu'] 
    dec = dend.corr()
    
for i in range(1,num):
    trdy = trading_dates[i*5]
    t1 = get_trade_days(trdy-dt.timedelta(30),trdy)[0]
    t2 = get_trade_days(trdy-dt.timedelta(180),trdy)[0]
    trdy0 = get_trade_days(trdy,trdy+dt.timedelta(7))[-1]

    stocks = get_index_stocks('000300.XSHG')
    prr = get_price(stocks, start_date=t1, end_date=trdy, frequency='daily', fields='close', skip_paused=False, fq='pre')
    pr = (prr.major_xs(trdy)-prr.major_xs(t1))/prr.major_xs(t1)
    prr = get_price(stocks, start_date=t2, end_date=trdy, frequency='daily', fields='close', skip_paused=False, fq='pre')
    pr['long'] =  (prr.major_xs(trdy)-prr.major_xs(t2))/prr.major_xs(t2)
    pr.rename(columns={'close':'short'}, inplace = True)

    dend = get_fundamentals(query(
              valuation.code, 
        valuation.market_cap,
        valuation.pb_ratio,
        valuation.pe_ratio,
        valuation.pcf_ratio,
          ).filter(
              # 这里不能使用 in 操作, 要使用in_()函数
              valuation.code.in_(stocks)
          ), date=trdy)
    dend = pd.merge(dend,pr,left_on='code',right_index=True)
    dend.index = dend['code']
    del dend['code']
    dend['market_cap'] = np.log(dend['market_cap'])

    list = ['operating_revenue_growth_rate','net_profit_growth_rate',
            'Variance20','Variance60','Variance120',
            'VOL20','VOL60','VOL120']
    dend1 = get_factor_values(securities=stocks, factors=list, start_date=trdy, end_date=trdy)
    for i in list:
        dend3 = dend1[i].T
        dend3.columns = [i]
        dend = pd.merge(dend,dend3,left_index=True,right_index=True)

    for i in dend.columns:
        md = dend[i].median()
        mad = ((dend[i] - md).abs()).median()
        minn = md-mad
        maxx = md+mad
        dend[i][dend[i]>maxx] = maxx
        dend[i][dend[i]<minn] = minn
        dend[i] = (dend[i] - dend[i].mean())/dend[i].std()


    dend['val'] = (dend['pb_ratio'] + dend['pe_ratio'] +dend['pcf_ratio'])/3
    dend['vol'] = (dend['Variance20']+dend['Variance60']+dend['Variance120'])/3
    dend['liquid'] = (dend['VOL20']+dend['VOL60']+dend['VOL120'])/3
    dend['grow'] = (dend['operating_revenue_growth_rate']+dend['net_profit_growth_rate'])/2
    del dend['pb_ratio']
    del dend['pe_ratio']
    del dend['pcf_ratio']
    del dend['Variance20']
    del dend['Variance60']
    del dend['Variance120']
    del dend['VOL20']
    del dend['VOL60']
    del dend['VOL120']
    del dend['operating_revenue_growth_rate']
    del dend['net_profit_growth_rate']

    dendf = get_fundamentals(query(
              valuation.code, 
        valuation.market_cap,
          ).filter(
              # 这里不能使用 in 操作, 要使用in_()函数
              valuation.code.in_(stocks)
          ), date=trdy)
    dendf['weight'] = np.sqrt(dendf['market_cap'])
    dendf.index = dendf['code']
    del dendf['code']
    del dendf['market_cap']
    dend = pd.merge(dend,dendf,left_index=True,right_index=True)
    price = get_price(stocks, start_date=trdy, end_date=trdy0, frequency='daily', fields='close', skip_paused=False, fq='pre')
    price1 = price.major_xs(trdy)
    price2 = price.major_xs(trdy0)
    retu = (price2 - price1)/price1
    retu.rename(columns={'close':'retu'}, inplace = True)
    dend = pd.merge(dend,retu,left_index=True,right_index=True)

    dend['market_cap'] = dend['market_cap']*dend['weight']
    dend['short'] = dend['weight']*dend['short'] 
    dend['long'] = dend['weight']*dend['long'] 
    dend['val'] = dend['weight']*dend['val'] 
    dend['vol'] = dend['weight']*dend['vol'] 
    dend['grow'] = dend['weight']*dend['grow'] 
    dend['liquid'] = dend['weight']*dend['liquid'] 
    dend['retu'] = dend['weight']*dend['retu'] 
    dec = dec + dend.corr()
dec = dec/num
 
for i in range(1):
    trdy = trading_dates[i*5]
    t1 = get_trade_days(trdy-dt.timedelta(30),trdy)[0]
    t2 = get_trade_days(trdy-dt.timedelta(180),trdy)[0]
    trdy0 = get_trade_days(trdy,trdy+dt.timedelta(7))[-1]

    stocks = get_index_stocks('000300.XSHG')
    prr = get_price(stocks, start_date=t1, end_date=trdy, frequency='daily', fields='close', skip_paused=False, fq='pre')
    pr = (prr.major_xs(trdy)-prr.major_xs(t1))/prr.major_xs(t1)
    prr = get_price(stocks, start_date=t2, end_date=trdy, frequency='daily', fields='close', skip_paused=False, fq='pre')
    pr['long'] =  (prr.major_xs(trdy)-prr.major_xs(t2))/prr.major_xs(t2)
    pr.rename(columns={'close':'short'}, inplace = True)

    dend = get_fundamentals(query(
              valuation.code, 
        valuation.market_cap,
        valuation.pb_ratio,
        valuation.pe_ratio,
        valuation.pcf_ratio,
          ).filter(
              # 这里不能使用 in 操作, 要使用in_()函数
              valuation.code.in_(stocks)
          ), date=trdy)
    dend = pd.merge(dend,pr,left_on='code',right_index=True)
    dend.index = dend['code']
    del dend['code']
    dend['market_cap'] = np.log(dend['market_cap'])

    list = ['operating_revenue_growth_rate','net_profit_growth_rate',
            'Variance20','Variance60','Variance120',
            'VOL20','VOL60','VOL120']
    dend1 = get_factor_values(securities=stocks, factors=list, start_date=trdy, end_date=trdy)
    for i in list:
        dend3 = dend1[i].T
        dend3.columns = [i]
        dend = pd.merge(dend,dend3,left_index=True,right_index=True)

    for i in dend.columns:
        md = dend[i].median()
        mad = ((dend[i] - md).abs()).median()
        minn = md-mad
        maxx = md+mad
        dend[i][dend[i]>maxx] = maxx
        dend[i][dend[i]<minn] = minn
        dend[i] = (dend[i] - dend[i].mean())/dend[i].std()


    dend['val'] = (dend['pb_ratio'] + dend['pe_ratio'] +dend['pcf_ratio'])/3
    dend['vol'] = (dend['Variance20']+dend['Variance60']+dend['Variance120'])/3
    dend['liquid'] = (dend['VOL20']+dend['VOL60']+dend['VOL120'])/3
    dend['grow'] = (dend['operating_revenue_growth_rate']+dend['net_profit_growth_rate'])/2
    del dend['pb_ratio']
    del dend['pe_ratio']
    del dend['pcf_ratio']
    del dend['Variance20']
    del dend['Variance60']
    del dend['Variance120']
    del dend['VOL20']
    del dend['VOL60']
    del dend['VOL120']
    del dend['operating_revenue_growth_rate']
    del dend['net_profit_growth_rate']

    dendf = get_fundamentals(query(
              valuation.code, 
        valuation.market_cap,
          ).filter(
              # 这里不能使用 in 操作, 要使用in_()函数
              valuation.code.in_(stocks)
          ), date=trdy)
    dendf['weight'] = np.sqrt(dendf['market_cap'])
    dendf.index = dendf['code']
    del dendf['code']
    del dendf['market_cap']
    dend = pd.merge(dend,dendf,left_index=True,right_index=True)
    price = get_price(stocks, start_date=trdy, end_date=trdy0, frequency='daily', fields='close', skip_paused=False, fq='pre')
    price1 = price.major_xs(trdy)
    price2 = price.major_xs(trdy0)
    retu = (price2 - price1)/price1
    retu.rename(columns={'close':'retu'}, inplace = True)
    dend = pd.merge(dend,retu,left_index=True,right_index=True)

    dend['market_cap'] = dend['market_cap']*dend['weight']
    dend['short'] = dend['weight']*dend['short'] 
    dend['long'] = dend['weight']*dend['long'] 
    dend['val'] = dend['weight']*dend['val'] 
    dend['vol'] = dend['weight']*dend['vol'] 
    dend['grow'] = dend['weight']*dend['grow'] 
    dend['liquid'] = dend['weight']*dend['liquid'] 
    dend['retu'] = dend['weight']*dend['retu'] 



    dfn = pd.DataFrame()
    for i in s['name']:
        dend[i] = 0
        dfn[i] = dend[i]
        del dend[i]
    dfc = dfn.copy()
    for i in range(len(dfc.index)):
        n = get_industry(security=[dfc.index[i]], date="2018-10-01")
        dfc.iloc[i,:][dfc.columns == n[dfc.index[i]]["sw_l1"]['industry_name']] = 1

    dend = pd.merge(dend,dfc,left_index=True,right_index=True)
    dend = dend.fillna(value=0)
    x =dend[['market_cap','short','grow','vol','val','农林牧渔I',
          '采掘I',
    '化工I',
       '钢铁I',
     '有色金属I',
         '电子I',
       '家用电器I',
        '食品饮料I',
        '纺织服装I',
       '轻工制造I',
       '医药生物I',
      '公用事业I',
       '交通运输I',
       '房地产I',
        '商业贸易I',
      '休闲服务I',
          '综合I',
       '建筑材料I',
       '建筑装饰I',
       '电气设备I',
       '国防军工I',
        '计算机I',
         '传媒I',
          '通信I',
         '银行I',
        '非银金融I',
          '汽车I',
        '机械设备I']]
    y = dend['retu'] 
    x=sm.add_constant(x)
    est=sm.OLS(y,x).fit()
    res = est.summary()
    des = est.pvalues
trading_dates = get_trade_days('2014-04-01','2018-10-11')
num = int(len(trading_dates)/5)
for i in range(0,num):
    trdy = trading_dates[i*5]
    t1 = get_trade_days(trdy-dt.timedelta(30),trdy)[0]
    t2 = get_trade_days(trdy-dt.timedelta(180),trdy)[0]
    trdy0 = get_trade_days(trdy,trdy+dt.timedelta(7))[-1]

    stocks = get_index_stocks('000300.XSHG')
    prr = get_price(stocks, start_date=t1, end_date=trdy, frequency='daily', fields='close', skip_paused=False, fq='pre')
    pr = (prr.major_xs(trdy)-prr.major_xs(t1))/prr.major_xs(t1)
    prr = get_price(stocks, start_date=t2, end_date=trdy, frequency='daily', fields='close', skip_paused=False, fq='pre')
    pr['long'] =  (prr.major_xs(trdy)-prr.major_xs(t2))/prr.major_xs(t2)
    pr.rename(columns={'close':'short'}, inplace = True)

    dend = get_fundamentals(query(
              valuation.code, 
        valuation.market_cap,
        valuation.pb_ratio,
        valuation.pe_ratio,
        valuation.pcf_ratio,
          ).filter(
              # 这里不能使用 in 操作, 要使用in_()函数
              valuation.code.in_(stocks)
          ), date=trdy)
    dend = pd.merge(dend,pr,left_on='code',right_index=True)
    dend.index = dend['code']
    del dend['code']
    dend['market_cap'] = np.log(dend['market_cap'])

    list = ['operating_revenue_growth_rate','net_profit_growth_rate',
            'Variance20','Variance60','Variance120',
            'VOL20','VOL60','VOL120']
    dend1 = get_factor_values(securities=stocks, factors=list, start_date=trdy, end_date=trdy)
    for i in list:
        dend3 = dend1[i].T
        dend3.columns = [i]
        dend = pd.merge(dend,dend3,left_index=True,right_index=True)

    for i in dend.columns:
        md = dend[i].median()
        mad = ((dend[i] - md).abs()).median()
        minn = md-mad
        maxx = md+mad
        dend[i][dend[i]>maxx] = maxx
        dend[i][dend[i]<minn] = minn
        dend[i] = (dend[i] - dend[i].mean())/dend[i].std()


    dend['val'] = (dend['pb_ratio'] + dend['pe_ratio'] +dend['pcf_ratio'])/3
    dend['vol'] = (dend['Variance20']+dend['Variance60']+dend['Variance120'])/3
    dend['liquid'] = (dend['VOL20']+dend['VOL60']+dend['VOL120'])/3
    dend['grow'] = (dend['operating_revenue_growth_rate']+dend['net_profit_growth_rate'])/2
    del dend['pb_ratio']
    del dend['pe_ratio']
    del dend['pcf_ratio']
    del dend['Variance20']
    del dend['Variance60']
    del dend['Variance120']
    del dend['VOL20']
    del dend['VOL60']
    del dend['VOL120']
    del dend['operating_revenue_growth_rate']
    del dend['net_profit_growth_rate']

    dendf = get_fundamentals(query(
              valuation.code, 
        valuation.market_cap,
          ).filter(
              # 这里不能使用 in 操作, 要使用in_()函数
              valuation.code.in_(stocks)
          ), date=trdy)
    dendf['weight'] = np.sqrt(dendf['market_cap'])
    dendf.index = dendf['code']
    del dendf['code']
    del dendf['market_cap']
    dend = pd.merge(dend,dendf,left_index=True,right_index=True)
    price = get_price(stocks, start_date=trdy, end_date=trdy0, frequency='daily', fields='close', skip_paused=False, fq='pre')
    price1 = price.major_xs(trdy)
    price2 = price.major_xs(trdy0)
    retu = (price2 - price1)/price1
    retu.rename(columns={'close':'retu'}, inplace = True)
    dend = pd.merge(dend,retu,left_index=True,right_index=True)

    dend['market_cap'] = dend['market_cap']*dend['weight']
    dend['short'] = dend['weight']*dend['short'] 
    dend['long'] = dend['weight']*dend['long'] 
    dend['val'] = dend['weight']*dend['val'] 
    dend['vol'] = dend['weight']*dend['vol'] 
    dend['grow'] = dend['weight']*dend['grow'] 
    dend['liquid'] = dend['weight']*dend['liquid'] 
    dend['retu'] = dend['weight']*dend['retu'] 



    dfn = pd.DataFrame()
    for i in s['name']:
        dend[i] = 0
        dfn[i] = dend[i]
        del dend[i]
    dfc = dfn.copy()
    for i in range(len(dfc.index)):
        n = get_industry(security=[dfc.index[i]], date="2018-10-01")
        dfc.iloc[i,:][dfc.columns == n[dfc.index[i]]["sw_l1"]['industry_name']] = 1

    dend = pd.merge(dend,dfc,left_index=True,right_index=True)
    dend = dend.fillna(value=0)
    x =dend[['market_cap','short','grow','vol','val','农林牧渔I',
          '采掘I',
    '化工I',
       '钢铁I',
     '有色金属I',
         '电子I',
       '家用电器I',
        '食品饮料I',
        '纺织服装I',
       '轻工制造I',
       '医药生物I',
      '公用事业I',
       '交通运输I',
       '房地产I',
        '商业贸易I',
      '休闲服务I',
          '综合I',
       '建筑材料I',
       '建筑装饰I',
       '电气设备I',
       '国防军工I',
        '计算机I',
         '传媒I',
          '通信I',
         '银行I',
        '非银金融I',
          '汽车I',
        '机械设备I']]
    y = dend['retu'] 
    x=sm.add_constant(x)
    est=sm.OLS(y,x).fit()
    res = est.summary()
    des = des + est.pvalues
des =des/num
des
 
 
分享到:
举报财经168客户端下载

全部回复

0/140

投稿 您想发表你的观点和看法?

更多人气分析师

  • 张亦巧

    人气2200文章4145粉丝45

    暂无个人简介信息

  • 王启蒙现货黄金

    人气304文章3275粉丝8

    本人做分析师以来,并专注于贵金属投资市场,尤其是在现货黄金...

  • 指导老师

    人气1864文章4423粉丝52

    暂无个人简介信息

  • 李冉晴

    人气2320文章3821粉丝34

    李冉晴,专业现贷实盘分析师。

  • 梁孟梵

    人气2176文章3177粉丝39

    qq:2294906466 了解群指导添加微信mfmacd

  • 张迎妤

    人气1896文章3305粉丝34

    个人专注于行情技术分析,消息面解读剖析,给予您第一时间方向...

  • 金泰铬J

    人气2328文章3925粉丝51

    投资问答解咨询金泰铬V/信tgtg67即可获取每日的实时资讯、行情...

  • 金算盘

    人气2696文章7761粉丝125

    高级分析师,混过名校,厮杀于股市和期货、证券市场多年,专注...

  • 金帝财神

    人气4760文章8329粉丝119

    本文由资深分析师金帝财神微信:934295330,指导黄金,白银,...

FX168财经

FX168财经学院

FX168财经

FX168北美