繁簡切換您正在訪問的是FX168財經網,本網站所提供的內容及信息均遵守中華人民共和國香港特別行政區當地法律法規。

FX168财经网>人物频道>帖子

【量化课堂】基本面量化研究--钢铁行业景气度预测

作者/asdkjkd 2019-09-24 09:41 0 来源: FX168财经网人物频道
import pandas as pd
import numpy as np
from jqdata import gta
import matplotlib.pyplot as plt
import datetime 
import statsmodels.api as sm

数据的导入¶

(包括钢材表观消费量、M2、房屋新开工面积、房屋竣工面积、固定资产投资完成额、商品房销售面积、基础设施建设投资、房地产开发投资完成额、钢铁产量等的月度数据)

steel_fd_data = pd.read_excel('钢铁基本面数据.xls',index_col=0)
###由于数据是wind直接下来的,所以不太干净,先预处理一下、去掉一些注释行
steel_fd_data = steel_fd_data[1:-2]
##数据钢材表观消费量为主,截断此数据开始之前的日期,此数据从2004年1月开始
steel_fd_data = steel_fd_data[steel_fd_data.index>=datetime.datetime(2004,1,1)]

因为有些数据是当年累计值(比如房屋新开工面积),为了方便之后做TTM环比比较,先将其处理为当月数据

由于一月份大多属于过年春节期间,因此不少数据在一月份为缺失值

need_adjust_columns = ['房屋新开工面积:累计值','房屋竣工面积:累计值','商品房销售面积:累计值','固定资产投资完成额:累计值',
                       '固定资产投资完成额:基础设施建设投资:累计值','房地产开发投资完成额:累计值']

steel_fd_data['month'] = steel_fd_data.index.map(lambda x:x.month)
#这些列都是一月份缺失数据的
for column in need_adjust_columns:
    if column != '固定资产投资完成额:基础设施建设投资:累计值':
        steel_fd_data[column.split(':')[0]] = steel_fd_data[column] - steel_fd_data[column].shift(1)
        steel_fd_data.ix[steel_fd_data['month']<=2,column.split(':')[0]] = steel_fd_data[steel_fd_data['month']<=2][column]
    else:
        steel_fd_data[column.split(':')[1]] = steel_fd_data[column] - steel_fd_data[column].shift(1)
        steel_fd_data.ix[steel_fd_data['month']<=2,column.split(':')[0]] = steel_fd_data[steel_fd_data['month']<=2][column]

###钢铁行业收入一月份没有缺失
column_ = '钢铁行业:大中型企业:销售收入:累计值'
steel_fd_data['钢铁行业销售收入'] = steel_fd_data[column_] - steel_fd_data[column_].shift(1)
steel_fd_data.ix[steel_fd_data['month'] == 1,'钢铁行业销售收入'] = steel_fd_data[steel_fd_data['month']==1][column_]
        
#取出接下来需要用的主要数据
data_columns_list = steel_fd_data.columns.tolist()
clean_data = steel_fd_data[data_columns_list[:2]+data_columns_list[-7:]+['产量:汽车:当月值']]
#去除第一行
clean_data = clean_data[1:]

对数据进行滚动TTM处理,并取其环比值¶

clean_data.fillna(0,inplace=True)
TTM_columns = ['表观消费量:钢材:当月值','房屋新开工面积','房屋竣工面积','固定资产投资完成额','基础设施建设投资',\
               '商品房销售面积','房地产开发投资完成额','钢铁行业销售收入','产量:汽车:当月值']
for column in TTM_columns:
    clean_data[column+'TTM'] = pd.rolling_sum(clean_data[column],12)
    clean_data[column+'TTM_环比'] = clean_data[column+'TTM']/clean_data[column+'TTM'].shift(1)-1

这里要对钢材表观消费量数据做一下调整:原因是其数据的不规整性:

其数据在15年及之前在1、2月份都是有的,但是16年之后1、2月份都缺失,如果这时候直接TTM环比的话,16年年初的时候将会有一个大幅的下降, 但这其实是由数据的不规整带来的。因此,在这里将16、17年1、2月的TTM环比数据都改为0

同样,汽车产量从14年之后1、2月的TTM环比数据都改为0

截取整段数据从2006年开始

clean_data['year'] = clean_data.index.map(lambda x:x.year)
clean_data['month'] = clean_data.index.map(lambda x:x.month)

clean_data.ix[(clean_data['year'].isin([2016,2017]))&(clean_data['month'].isin([1,2])),'表观消费量:钢材:当月值TTM_环比'] = 0

clean_data.ix[(clean_data['year'].isin([2014,2015,2016,2017]))&(clean_data['month'].isin([1,2])),'产量:汽车:当月值TTM_环比'] = 0

clean_data = clean_data[clean_data['year']>=2006]
clean_data.ix[(clean_data['year'] == 2006)&(clean_data['month']==8),'商品房销售面积TTM_环比'] = 0
/opt/conda/lib/python3.4/site-packages/pandas/core/indexing.py:415: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self.obj[item] = s
use_columns = [i+'TTM_环比' for i in TTM_columns]+['M2:同比']
use_data = clean_data[use_columns]
use_data.dropna(inplace=True)

###由于列名太长,这里做一个简写,但其值是表示的为TTM_环比值(但M2为同比值)
use_data.columns = ['钢材消费量TTM环比','新开工房TTM环比','竣工房TTM环比','固投TTM环比',\
                    '基建TTM环比','房销售面积TTM环比','房地产投资TTM环比','钢铁行业收入TTM环比','汽车产量TTM环比','M2']
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:3: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  app.launch_new_instance()

钢铁基本面数据之间的关系以及领先与滞后¶

def plot_line_chart(x_axis,y1_axis,y2_axis,label1,label2):
    
    Fig = plt.figure(figsize(10,8))
    Ax = Fig.add_subplot(111)
    lines = Ax.plot(x_axis,y1_axis,'r-',x_axis,y2_axis,'b-')
    lines[0].set_label(label1)
    lines[1].set_label(label2)
    Ax.legend(loc = 0)

def plot_line_chart_double_yaxis(x_axis,y1_axis,y2_axis,label1,label2):
    
    Fig = plt.figure(figsize(10,8))
    Ax = Fig.add_subplot(111)
    Ax.plot(x_axis,y1_axis,'r-')
    Ax.set_ylabel(label1)
    
    Ax_ = Ax.twinx()
    Ax_.plot(x_axis,y2_axis,'b-')
    Ax_.set_ylabel(label2)
    
def calculate_lag(data,column1,column2):
    
    regre_results=[]
    for i in range(-5,6):
        reg_data = pd.concat([data[column1].shift(i),data[column2]],axis =1)
        reg_data.dropna(inplace=True)
        y=reg_data[column1]
        x=reg_data[column2]
        x=sm.add_constant(x)   
        est=sm.OLS(y,x)
        results=est.fit()
        r2 = results.rsquared 
        coef = results.params[1]
        p = results.pvalues[1]
        corr = reg_data[column1].corr(reg_data[column2])
        
        regre_results.append([i,corr,coef,p,r2])
        
    regre_df = pd.DataFrame(regre_results,columns=['领先期','相关系数','回归系数','P值','R方'])
    
    return regre_df

    

钢材表观消费量(TTM)与房屋新开工面积(TTM)¶

plot_line_chart(use_data.index,use_data['钢材消费量TTM环比'],use_data['新开工房TTM环比'],'钢材表观消费量:TTM环比','房屋新开工面积:TTM环比')
chart_xkg_gxf = calculate_lag(use_data,'新开工房TTM环比','钢材消费量TTM环比') 
chart_xkg_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.494652 1.210657 8.057526e-10 0.244680
1 -4 0.511898 1.250358 1.389922e-10 0.262039
2 -3 0.493004 1.204668 7.025351e-10 0.243053
3 -2 0.500122 1.220213 3.145176e-10 0.250122
4 -1 0.514065 1.256256 7.041873e-11 0.264262
5 0 0.470194 1.142141 3.548642e-09 0.221082
6 1 0.393328 0.957595 1.401036e-06 0.154707
7 2 0.343459 0.838657 3.259667e-05 0.117964
8 3 0.188918 0.463060 2.592787e-02 0.035690
9 4 0.140227 0.345719 1.009161e-01 0.019664
10 5 0.108444 0.268907 2.071656e-01 0.011760

房屋新开工面积(TTM)与商品房销售面积(TTM)¶

plot_line_chart(use_data.index,use_data['新开工房TTM环比'],use_data['房销售面积TTM环比'],'房屋新开工面积:TTM环比','商品房销售面积:TTM环比')
chart_xkg_fxs = calculate_lag(use_data,'新开工房TTM环比','房销售面积TTM环比') 
chart_xkg_fxs
领先期 相关系数 回归系数 P值 R方
0 -5 0.439651 0.523825 7.653033e-08 0.193293
1 -4 0.430737 0.512420 1.338582e-07 0.185534
2 -3 0.420003 0.499698 2.645205e-07 0.176403
3 -2 0.309651 0.368403 1.969272e-04 0.095884
4 -1 0.253768 0.303059 2.394450e-03 0.064398
5 0 0.369778 0.440596 5.924863e-06 0.136736
6 1 0.147222 0.175434 8.149016e-02 0.021674
7 2 0.070530 0.085811 4.076314e-01 0.004974
8 3 0.058054 0.070915 4.972431e-01 0.003370
9 4 -0.070280 -0.086537 4.127221e-01 0.004939
10 5 -0.101976 -0.126894 2.357181e-01 0.010399

商品房销售面积(TTM)与钢材表观消费量(TTM)¶

plot_line_chart_double_yaxis(use_data.index,use_data['房销售面积TTM环比'],use_data['钢材消费量TTM环比'],'商品房销售面积:TTM环比','钢材消费量:TTM环比')
chart_fxs_gxf = calculate_lag(use_data,'房销售面积TTM环比','钢材消费量TTM环比') 
chart_fxs_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.036177 0.071470 6.747085e-01 0.001309
1 -4 0.156861 0.312623 6.616168e-02 0.024605
2 -3 0.273446 0.549670 1.125678e-03 0.074773
3 -2 0.374056 0.753450 5.298867e-06 0.139918
4 -1 0.514016 1.053551 7.075580e-11 0.264213
5 0 0.600553 1.224321 2.788067e-15 0.360664
6 1 0.631484 1.288070 4.655938e-17 0.398772
7 2 0.610734 1.247909 1.127121e-15 0.372995
8 3 0.573210 1.175172 1.651489e-13 0.328570
9 4 0.496066 1.023276 6.133997e-10 0.246081
10 5 0.440559 0.912868 7.143625e-08 0.194092

房屋竣工面积(TTM)与钢材消费量(TTM)¶

plot_line_chart_double_yaxis(use_data.index,use_data['竣工房TTM环比'],use_data['钢材消费量TTM环比'],'房屋竣工面积:TTM环比','钢材消费量:TTM环比')
chart_jgf_gxf = calculate_lag(use_data,'竣工房TTM环比','钢材消费量TTM环比') 
chart_jgf_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.039678 0.064767 0.645266 0.001574
1 -4 -0.019928 -0.032464 0.816546 0.000397
2 -3 -0.007979 -0.012993 0.925729 0.000064
3 -2 -0.038046 -0.061846 0.655386 0.001447
4 -1 0.008400 0.013662 0.921246 0.000071
5 0 0.104532 0.168999 0.215708 0.010927
6 1 0.079987 0.129620 0.345758 0.006398
7 2 0.164041 0.265412 0.052782 0.026910
8 3 0.145610 0.236506 0.087202 0.021202
9 4 0.173375 0.282578 0.041992 0.030059
10 5 0.174423 0.285966 0.041499 0.030423

固定投资完成额(TTM)与钢材消费量(TTM)¶

plot_line_chart(use_data.index,use_data['固投TTM环比'],use_data['钢材消费量TTM环比'],'固定投资完成额:TTM环比','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'固投TTM环比','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.244045 0.274462 0.004055 0.059558
1 -4 0.261286 0.293987 0.001965 0.068270
2 -3 0.314153 0.353506 0.000166 0.098692
3 -2 0.347938 0.391230 0.000025 0.121061
4 -1 0.361147 0.406961 0.000011 0.130427
5 0 0.384918 0.435056 0.000002 0.148162
6 1 0.369019 0.415936 0.000007 0.136175
7 2 0.338102 0.381084 0.000044 0.114313
8 3 0.320925 0.361044 0.000117 0.102993
9 4 0.301903 0.340731 0.000320 0.091145
10 5 0.311078 0.352965 0.000216 0.096770

基础设施建设投资(TTM)与钢材表观消费量(TTM)¶

plot_line_chart(use_data.index,use_data['基建TTM环比'],use_data['钢材消费量TTM环比'],'基础设施建设投资:TTM环比','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'基建TTM环比','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 -0.008419 -0.011117 0.922218 0.000071
1 -4 0.043222 0.057071 0.614712 0.001868
2 -3 0.088951 0.117406 0.297732 0.007912
3 -2 0.133310 0.175617 0.116363 0.017772
4 -1 0.180527 0.238504 0.032179 0.032590
5 0 0.248761 0.328629 0.002834 0.061882
6 1 0.292400 0.387371 0.000434 0.085498
7 2 0.288777 0.383791 0.000540 0.083392
8 3 0.292671 0.390291 0.000472 0.085657
9 4 0.298607 0.400987 0.000374 0.089166
10 5 0.316240 0.426768 0.000167 0.100007

房地产投资和钢材消费量(TTM)¶

plot_line_chart(use_data.index,use_data['房地产投资TTM环比'],use_data['钢材消费量TTM环比'],'房地产投资完成额:TTM环比','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'房地产投资TTM环比','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.521876 0.627477 6.164546e-11 0.272354
1 -4 0.486885 0.584353 1.402242e-09 0.237057
2 -3 0.488694 0.586285 1.037837e-09 0.238821
3 -2 0.484789 0.580433 1.282120e-09 0.235020
4 -1 0.477737 0.569918 2.093674e-09 0.228233
5 0 0.455423 0.543601 1.236175e-08 0.207410
6 1 0.395263 0.471935 1.230126e-06 0.156233
7 2 0.330166 0.395118 6.780456e-05 0.109010
8 3 0.227008 0.272194 7.201134e-03 0.051533
9 4 0.170021 0.204532 4.618849e-02 0.028907
10 5 0.121208 0.146595 1.582706e-01 0.014691

汽车产量(TTM)与钢材消费量(TTM)¶

plot_line_chart_double_yaxis(use_data.index,use_data['汽车产量TTM环比'],use_data['钢材消费量TTM环比'],'汽车产量:TTM环比','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'汽车产量TTM环比','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.427195 0.748433 1.928531e-07 0.182495
1 -4 0.525598 0.920078 3.611841e-11 0.276253
2 -3 0.634736 1.111433 4.846082e-17 0.402890
3 -2 0.724027 1.272897 5.128554e-24 0.524216
4 -1 0.736949 1.303056 2.077786e-25 0.543094
5 0 0.785624 1.382278 5.478489e-31 0.617205
6 1 0.690908 1.219318 2.525497e-21 0.477354
7 2 0.648352 1.147791 4.710913e-18 0.420361
8 3 0.545613 0.968759 3.766158e-12 0.297693
9 4 0.461471 0.824318 1.222477e-08 0.212955
10 5 0.346763 0.622978 3.308526e-05 0.120245

M2与钢材消费量(TTM)¶

plot_line_chart_double_yaxis(use_data.index,use_data['M2'],use_data['钢材消费量TTM环比'],'M2','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'M2','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.439704 246.609769 7.622284e-08 0.193339
1 -4 0.531815 298.147224 1.920301e-11 0.282828
2 -3 0.606799 340.547427 2.420984e-15 0.368205
3 -2 0.674200 378.166519 6.840686e-20 0.454546
4 -1 0.728889 407.935127 1.238320e-24 0.531279
5 0 0.761632 424.306728 3.678241e-28 0.580083
6 1 0.770310 426.816460 6.021124e-29 0.593378
7 2 0.769847 424.547981 1.069960e-28 0.592665
8 3 0.749096 411.007586 2.849955e-26 0.561145
9 4 0.720866 394.912805 2.087951e-23 0.519648
10 5 0.669588 366.094684 3.704375e-19 0.448349

总结¶

经过前面的一番检验:

1.新开工房面积、房地产投资完成额都是钢材表观消费量的滞后指标

2.固定资产投资完成额、汽车产量与钢材表观消费量基本同步

3.商品房销售面积,基础设施建设投资、M2为钢材表观消费量的领先指标,领先期分别为1~2个月,3~5个月,1~2个月

因此,对于钢铁表观消费量的预测,可以使用商品房销售面积、基础设施建设投资、M2为使用变量

钢材表观消费量TTM环比 预测¶

###以前一年数据作为样本进行滚动回归,得到回归系数,以此系数预测下一个月钢材表观消费量TTM环比增速
###商品房销售面积、基础设施建设投资、M2的领先期分别选为2个月、4个月、2个月
testdata = use_data[['钢材消费量TTM环比','房销售面积TTM环比','基建TTM环比','M2']]
def predict_TTM_growth(testdata,y_var,x_var,x_lag,regre_period = 12):
    
    x_var_lag = []
    for x,lag in zip(x_var,x_lag):
        testdata[x+'_lag'+str(lag)] = testdata[x].shift(lag)
        x_var_lag.append(x+'_lag'+str(lag))
        use_testdata = testdata[[y_var] + x_var_lag]
        use_testdata.dropna(inplace=True) 
        use_testdata[y_var+'_预测'] = np.NaN
    
    corr_chart = use_testdata[x_var_lag].corr()
    print (corr_chart)
    for i in range(regre_period,len(use_testdata)):
    
        train_data = use_testdata[i-regre_period:i]
        y = train_data[y_var]
        x = train_data[x_var_lag]
        x = sm.add_constant(x)
        est = sm.OLS(y,x)
        results = est.fit()
    
        predict_data = use_testdata[i:i+1]
        predict_x = predict_data[x_var_lag]
        predict_x = sm.add_constant(predict_x)

        
        use_testdata.iloc[i,-1] = results.predict(predict_x)
    
    return use_testdata
    
predict_data = predict_TTM_growth(testdata,'钢材消费量TTM环比',['房销售面积TTM环比','基建TTM环比','M2'],[2,4,2])
plot_line_chart(predict_data.index,predict_data['钢材消费量TTM环比'],predict_data['钢材消费量TTM环比_预测'],'钢材消费量TTM环比','钢材消费量TTM环比预测')
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:5: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:8: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:9: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/pandas/core/indexing.py:115: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._setitem_with_indexer(indexer, value)
                 房销售面积TTM环比_lag2  基建TTM环比_lag4   M2_lag2
房销售面积TTM环比_lag2         1.000000      0.198354  0.455816
基建TTM环比_lag4            0.198354      1.000000  0.419496
M2_lag2                 0.455816      0.419496  1.000000
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:27: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

钢铁行业营业收入预测¶

steel_price = steel_fd_data[['钢材价格综合指数']]
steel_price.fillna(method='ffill',inplace = True)
steel_price['钢材价格综合指数_lag2'] = steel_price['钢材价格综合指数'].shift(2)
steel_price['钢材价格综合指数_lag14'] = steel_price['钢材价格综合指数'].shift(14)

tdata = use_data[['钢材消费量TTM环比','房销售面积TTM环比','基建TTM环比','M2']]

###以前一年数据作为样本进行滚动回归,得到回归系数,以此系数预测下一个月钢材表观消费量TTM环比增速
testdata = pd.concat([tdata[['房销售面积TTM环比','基建TTM环比','M2']],\
                      steel_price[['钢材价格综合指数']],\
                      clean_data[['钢铁行业销售收入TTM_环比']][:-3]],axis=1)


predict_data_ = predict_TTM_growth(testdata,'钢铁行业销售收入TTM_环比',\
                                   ['房销售面积TTM环比','基建TTM环比','钢材价格综合指数','钢材价格综合指数','M2'],[2,4,2,14,2])
plot_line_chart(predict_data_.index,predict_data_['钢铁行业销售收入TTM_环比'],predict_data_['钢铁行业销售收入TTM_环比_预测'],\
                '钢铁行业销售收入TTM_环比','钢铁行业销售收入TTM_环比_预测')
/opt/conda/lib/python3.4/site-packages/pandas/core/frame.py:2532: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  **kwargs)
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:3: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  app.launch_new_instance()
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:4: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:8: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:9: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/pandas/core/indexing.py:115: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._setitem_with_indexer(indexer, value)
                 房销售面积TTM环比_lag2  基建TTM环比_lag4  钢材价格综合指数_lag2  钢材价格综合指数_lag14  \
房销售面积TTM环比_lag2         1.000000     -0.082437      -0.004757       -0.185949   
基建TTM环比_lag4           -0.082437      1.000000       0.029752        0.170184   
钢材价格综合指数_lag2          -0.004757      0.029752       1.000000        0.514030   
钢材价格综合指数_lag14         -0.185949      0.170184       0.514030        1.000000   
M2_lag2                 0.083721      0.225676       0.328398        0.690747   

                  M2_lag2  
房销售面积TTM环比_lag2  0.083721  
基建TTM环比_lag4     0.225676  
钢材价格综合指数_lag2    0.328398  
钢材价格综合指数_lag14   0.690747  
M2_lag2          1.000000  
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:27: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
分享到:
举报财经168客户端下载

全部回复

0/140

投稿 您想发表你的观点和看法?

更多人气分析师

  • 张亦巧

    人气2192文章4145粉丝45

    暂无个人简介信息

  • 梁孟梵

    人气2176文章3177粉丝39

    qq:2294906466 了解群指导添加微信mfmacd

  • 指导老师

    人气1864文章4423粉丝52

    暂无个人简介信息

  • 李冉晴

    人气2320文章3821粉丝34

    李冉晴,专业现贷实盘分析师。

  • 王启蒙现货黄金

    人气296文章3165粉丝8

    本人做分析师以来,并专注于贵金属投资市场,尤其是在现货黄金...

  • 张迎妤

    人气1896文章3305粉丝34

    个人专注于行情技术分析,消息面解读剖析,给予您第一时间方向...

  • 金泰铬J

    人气2328文章3925粉丝51

    投资问答解咨询金泰铬V/信tgtg67即可获取每日的实时资讯、行情...

  • 金算盘

    人气2696文章7761粉丝125

    高级分析师,混过名校,厮杀于股市和期货、证券市场多年,专注...

  • 金帝财神

    人气4760文章8329粉丝119

    本文由资深分析师金帝财神微信:934295330,指导黄金,白银,...

FX168财经

FX168财经学院

FX168财经

FX168北美