繁簡切換您正在訪問的是FX168財經網,本網站所提供的內容及信息均遵守中華人民共和國香港特別行政區當地法律法規。

FX168财经网>人物频道>帖子

策略分享之一

作者/dsajasd 2019-08-14 13:08 0 来源: FX168财经网人物频道

极端梯度提升 (eXtreme Gradient Boosting) 是一种基于决策树的集成机器学习方法,适用于分类和回归问题。其优点是速度快、效果好、能处理大规模数据、支持自定义损失函数等。

In [1]:

import os
import pickle
?
import pandas as pd
import xgboost as xgb
In [2]:

with open(r'./raw-data.csv') as f:
raw_data = pd.read_csv(f, parse_dates=['date'], index_col=['date', 'symbol'])
In [3]:

with open(r'macro-data.csv') as f:
macro_data = pd.read_csv(f, parse_dates=['date'], index_col=['date'])
In [4]:

FEATURE_NAMES = [
'book_leverage', 'cash_earnings_to_price_ratio',
'cumulative_range', 'daily_standard_deviation', 'debt_to_assets',
'earnings_growth', 'earnings_to_price_ratio', 'historical_sigma',
'market_leverage', 'one_month_share_turnover', 'sales_growth',
'three_months_share_turnover', 'twelve_months_share_turnover',
'CPI', 'PPI', 'M2', 'PMI'
]
In [5]:

def merge_macro_data(data, macro_data):

# 当月宏观数据下月公布, 本月只能获取上月数据
macro_data_lagged = macro_data.shift().dropna()

round_to_month_end = pd.offsets.MonthEnd().rollforward
data['calendar_month_ends'] = data.index.get_level_values('date').map(round_to_month_end)

res = (
    data
    .join(macro_data_lagged, on='calendar_month_ends', how='inner')
    .drop('calendar_month_ends', axis=1)
)
return res    

In [6]:

data = merge_macro_data(raw_data, macro_data)
In [7]:

def convert_industry_to_dummy(data):
industry = data['industry']
ind_dummy = pd.get_dummies(industry)
res = (
pd.concat([data, ind_dummy], axis=1)
.drop('industry', axis=1)
)
return res
?
def remove_unqualified_stock(data):
non_ST = ~data['is_ST']
non_suspended = ~data['is_suspended']
days_gt_180 = data['days_listed'] > 180
return data[non_ST
& non_suspended
& days_gt_180]

def label_by_quantile(r, quantiles=(0.1, 0.9)):

lower_bound, upper_bound = r.quantile(quantiles)
label = pd.np.repeat(pd.np.nan, len(r))
label[r > upper_bound] = 1
label[r < lower_bound] = 0
return label

?
def label_return(data, label_func=label_by_quantile):
label = (data['forward_return']
.groupby(level='date')
.transform(label_func)
.dropna())
return label
In [8]:

BURNIN_PERIODS = 48
rebalance_dates = raw_data.index.get_level_values('date').unique()[BURNIN_PERIODS: ]
In [9]:

def training_window(rebalance_date, window=48):
month = pd.offsets.MonthBegin()
end = rebalance_date - month # 换仓日当月月初
start = end - window * month

# start 和 end 都是月初, 虽然不一定是交易日, 但在月末换仓的假设下
# 能保证必定覆盖 `window` 个月, 同时rebalance_date不在窗口内
return start, end

?
def get_training_dataset(rebalance_date, data, window=48):
start, end = training_window(rebalance_date)
data = (
data
.loc[start:end]
.pipe(remove_unqualified_stock)
.pipe(convert_industry_to_dummy)
)
label = label_return(data)

features = data.drop(['is_ST', 'is_suspended', 'days_listed', 'forward_return'], axis=1)
label, features = label.align(features, join='inner')
return features, label

?
def get_prediction_dataset(rebalance_date, data):
data = (
data
.loc[rebalance_date]
.pipe(remove_unqualified_stock)
.pipe(convert_industry_to_dummy)
)
features = data.drop(['is_ST', 'is_suspended', 'days_listed', 'forward_return'], axis=1)
return features
In [10]:

def make_model(rebalance_date, data, window=48,
n_estimators=100, max_depth=3, booster='gbtree', **kwargs):
X, y = get_training_dataset(rebalance_date, data)

if 'n_jobs' not in kwargs:
    kwargs['n_jobs'] = 4
if 'slient' not in kwargs:
    kwargs['slient'] = True    
model = xgb.XGBClassifier(n_estimators=n_estimators, max_depth=max_depth, **kwargs)
model.fit(X,y)
return model

?
def make_factor(rebalance_date, model, data):
features = get_prediction_dataset(rebalance_date, data)
res = pd.Series(model.predict_proba(features)[:,1], pd.MultiIndex.from_product(
[[rebalance_date], features.index], names=['date', 'symbol']))
return res
In [11]:

from collections import OrderedDict
?
?
def get_portfolios_from_factor_data(factor_data, quantile):
factor_data = factor_data[factor_data['factor_quantile'] == quantile]

def build_portfolio(df):
    # 等权组合, 权重为 1/len(df), index为股票代码---df.index的第二层
    return pd.Series(1 / len(df), index=df.index.get_level_values('symbol'))

portfolios = OrderedDict()
for date, df in factor_data.groupby(level='date'):
    portfolios[date] = build_portfolio(df)
return portfolios

?
def net_value(rebalance_dates, portfolio_weights, daily_returns):
"""计算组合净值
rebalance_dates: list. 回测期内所有换仓日
portfolio_weights: dict. 每个换仓日的目标组合. key为换仓日, value为代表目标组合的Series, index为股票代码, value为权重
daily_return: DataFrame. 回测期内所有股票的日度复权收益率. index为日期, columns为股票代码
"""
net_value_list = []
for start, end in zip(rebalance_dates[:-1], rebalance_dates[1:]):
weights = portfolio_weights[start]

    # 每个持仓周期为左闭右开区间,以确保一个交易日属于且只属于一个持仓周期
    holding_period = (daily_returns.index >= start) &amp; (daily_returns.index < end)
    assets_held = weights.index

    rtn = daily_returns.loc[holding_period, assets_held].fillna(0)

    net_value_list.append(period_net_value(rtn, weights))

res = merge_period_net_value(net_value_list)
return res

?
def period_net_value(daily_returns, weights):
asset_net_value = (1 daily_returns).cumprod()
normalized_weights = weights / weights.sum()
portf_net_value = asset_net_value.dot(normalized_weights)
return portf_net_value
?
def merge_period_net_value(period_net_values):
net_value_list = []
init_capital = 1
for nv in period_net_values:
nv *= init_capital
net_value_list.append(nv)

    # 下一段净值的初始资金是上一段最后一天的值
    init_capital = nv.iat[-1]
res = pd.concat(net_value_list)

# 整个回测期第一天的净值一定是1, 第一天的return其实用不到
res.iloc[0] = 1
return res

In [12]:

factor_list = []
model_dict = {}
for date in rebalance_dates:
print('Training model for {}'.format(date))
model = make_model(date, data)
model_dict[date] = model

factor = make_factor(date, model, data)
factor_list.append(factor)

factor = pd.concat(factor_list)
Training model for 2013-01-31 00:00:00
Training model for 2013-02-28 00:00:00
Training model for 2013-03-29 00:00:00
Training model for 2013-04-26 00:00:00
Training model for 2013-05-31 00:00:00
Training model for 2013-06-28 00:00:00
Training model for 2013-07-31 00:00:00
Training model for 2013-08-30 00:00:00
Training model for 2013-09-30 00:00:00
Training model for 2013-10-31 00:00:00
Training model for 2013-11-29 00:00:00
Training model for 2013-12-31 00:00:00
Training model for 2014-01-30 00:00:00
Training model for 2014-02-28 00:00:00
Training model for 2014-03-31 00:00:00
Training model for 2014-04-30 00:00:00
Training model for 2014-05-30 00:00:00
Training model for 2014-06-30 00:00:00
Training model for 2014-07-31 00:00:00
Training model for 2014-08-29 00:00:00
Training model for 2014-09-30 00:00:00
Training model for 2014-10-31 00:00:00
Training model for 2014-11-28 00:00:00
Training model for 2014-12-31 00:00:00
Training model for 2015-01-30 00:00:00
Training model for 2015-02-27 00:00:00
Training model for 2015-03-31 00:00:00
Training model for 2015-04-30 00:00:00
Training model for 2015-05-29 00:00:00
Training model for 2015-06-30 00:00:00
Training model for 2015-07-31 00:00:00
Training model for 2015-08-31 00:00:00
Training model for 2015-09-30 00:00:00
Training model for 2015-10-30 00:00:00
Training model for 2015-11-30 00:00:00
Training model for 2015-12-31 00:00:00
Training model for 2016-01-29 00:00:00
Training model for 2016-02-29 00:00:00
Training model for 2016-03-31 00:00:00
Training model for 2016-04-29 00:00:00
Training model for 2016-05-31 00:00:00
Training model for 2016-06-30 00:00:00
Training model for 2016-07-29 00:00:00
Training model for 2016-08-31 00:00:00
Training model for 2016-09-30 00:00:00
Training model for 2016-10-31 00:00:00
Training model for 2016-11-30 00:00:00
Training model for 2016-12-30 00:00:00
Training model for 2017-01-26 00:00:00
Training model for 2017-02-28 00:00:00
Training model for 2017-03-31 00:00:00
Training model for 2017-04-28 00:00:00
Training model for 2017-05-31 00:00:00
Training model for 2017-06-30 00:00:00
Training model for 2017-07-31 00:00:00
Training model for 2017-08-31 00:00:00
Training model for 2017-09-29 00:00:00
Training model for 2017-10-31 00:00:00
Training model for 2017-11-30 00:00:00
Training model for 2017-12-29 00:00:00
Training model for 2018-01-31 00:00:00
Training model for 2018-02-28 00:00:00
Training model for 2018-03-30 00:00:00
Training model for 2018-04-27 00:00:00
Training model for 2018-05-31 00:00:00
Training model for 2018-06-29 00:00:00
Training model for 2018-07-31 00:00:00
Training model for 2018-08-31 00:00:00
Training model for 2018-09-28 00:00:00
In [13]:

def make_factor_data(factor, quantiles=10):
quantile_labels = list(range(1, quantiles 1))
factor_quantile = (factor
.groupby(level='date', group_keys=False)
.apply(pd.qcut,
q=quantiles,
labels=quantile_labels))

res = pd.concat({'factor': factor, 'factor_quantile': factor_quantile},
                axis=1)
return res

In [14]:

factor_data = make_factor_data(factor, quantiles=10)
In [15]:

with open('daily-returns.csv') as f:
daily_returns = pd.read_csv(f, parse_dates=['date'], index_col=['date'])
?
with open('CS-500-return.csv') as f:
CS_500 = pd.read_csv(f, parse_dates=['date'], index_col=['date']).squeeze()
In [16]:

excess_returns = daily_returns.apply(lambda x: x - CS_500)
In [17]:

QUANTILE_GROUPS = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
?
quantile_portf_net_values = OrderedDict()
for group in QUANTILE_GROUPS:
portfolio_weights = get_portfolios_from_factor_data(factor_data, group)
rebalance_dates = list(portfolio_weights.keys())
nv = net_value(rebalance_dates, portfolio_weights, excess_returns)
quantile_portf_net_values[group] = nv
In [22]:

pd.concat(quantile_portf_net_values, axis=1).plot(figsize=(18, 6))
Out[22]:

In [19]:

with open('portfolio-xgboost-rolling-window-all.pkl', 'wb') as f:
pickle.dump(portfolio_weights, f)
In [20]:

win_ratio = (quantile_portf_net_values[10].loc[rebalance_dates].pct_change() > 0).mean()
print('Monthly win ratio: {}'.format(win_ratio))
Monthly win ratio: 0.6956521739130435
In [21]:

print('Latest portfolio on {}'.format(rebalance_dates[-1]))
portfolio_weights[rebalance_dates[-1]].to_dict()
Latest portfolio on 2018-09-28 00:00:00
Out[21]:
{'000001.XSHE': 0.0029940119760479044,
'000009.XSHE': 0.0029940119760479044,
'000012.XSHE': 0.0029940119760479044,
'000021.XSHE': 0.0029940119760479044,
'000026.XSHE': 0.0029940119760479044,
'000027.XSHE': 0.0029940119760479044,
'000030.XSHE': 0.0029940119760479044,
'000039.XSHE': 0.0029940119760479044,
'000058.XSHE': 0.0029940119760479044,
'000059.XSHE': 0.0029940119760479044,
'000060.XSHE': 0.0029940119760479044,
'000069.XSHE': 0.0029940119760479044,
'000100.XSHE': 0.0029940119760479044,
'000157.XSHE': 0.0029940119760479044,
'000338.XSHE': 0.0029940119760479044,
'000402.XSHE': 0.0029940119760479044,
'000404.XSHE': 0.0029940119760479044,
'000413.XSHE': 0.0029940119760479044,
'000417.XSHE': 0.0029940119760479044,
'000419.XSHE': 0.0029940119760479044,
'000423.XSHE': 0.0029940119760479044,
'000425.XSHE': 0.0029940119760479044,
'000501.XSHE': 0.0029940119760479044,
'000524.XSHE': 0.0029940119760479044,
'000525.XSHE': 0.0029940119760479044,
'000529.XSHE': 0.0029940119760479044,
'000536.XSHE': 0.0029940119760479044,
'000541.XSHE': 0.0029940119760479044,
'000551.XSHE': 0.0029940119760479044,
'000559.XSHE': 0.0029940119760479044,
'000581.XSHE': 0.0029940119760479044,
'000582.XSHE': 0.0029940119760479044,
'000589.XSHE': 0.0029940119760479044,
'000598.XSHE': 0.0029940119760479044,
'000617.XSHE': 0.0029940119760479044,
'000627.XSHE': 0.0029940119760479044,
'000630.XSHE': 0.0029940119760479044,
'000631.XSHE': 0.0029940119760479044,
'000639.XSHE': 0.0029940119760479044,
'000652.XSHE': 0.0029940119760479044,
'000656.XSHE': 0.0029940119760479044,
'000671.XSHE': 0.0029940119760479044,
'000683.XSHE': 0.0029940119760479044,
'000685.XSHE': 0.0029940119760479044,
'000715.XSHE': 0.0029940119760479044,
'000716.XSHE': 0.0029940119760479044,
'000718.XSHE': 0.0029940119760479044,
'000753.XSHE': 0.0029940119760479044,
'000758.XSHE': 0.0029940119760479044,
'000761.XSHE': 0.0029940119760479044,
'000778.XSHE': 0.0029940119760479044,
'000785.XSHE': 0.0029940119760479044,
'000800.XSHE': 0.0029940119760479044,
'000809.XSHE': 0.0029940119760479044,
'000828.XSHE': 0.0029940119760479044,
'000848.XSHE': 0.0029940119760479044,
'000858.XSHE': 0.0029940119760479044,
'000869.XSHE': 0.0029940119760479044,
'000876.XSHE': 0.0029940119760479044,
'000880.XSHE': 0.0029940119760479044,
'000883.XSHE': 0.0029940119760479044,
'000895.XSHE': 0.0029940119760479044,
'000915.XSHE': 0.0029940119760479044,
'000919.XSHE': 0.0029940119760479044,
'000937.XSHE': 0.0029940119760479044,
'000951.XSHE': 0.0029940119760479044,
'000960.XSHE': 0.0029940119760479044,
'000999.XSHE': 0.0029940119760479044,
'001896.XSHE': 0.0029940119760479044,
'002004.XSHE': 0.0029940119760479044,
'002014.XSHE': 0.0029940119760479044,
'002017.XSHE': 0.0029940119760479044,
'002029.XSHE': 0.0029940119760479044,
'002031.XSHE': 0.0029940119760479044,
'002037.XSHE': 0.0029940119760479044,
'002039.XSHE': 0.0029940119760479044,
'002048.XSHE': 0.0029940119760479044,
'002055.XSHE': 0.0029940119760479044,
'002060.XSHE': 0.0029940119760479044,
'002067.XSHE': 0.0029940119760479044,
'002068.XSHE': 0.0029940119760479044,
'002080.XSHE': 0.0029940119760479044,
'002081.XSHE': 0.0029940119760479044,
'002092.XSHE': 0.0029940119760479044,
'002097.XSHE': 0.0029940119760479044,
'002105.XSHE': 0.0029940119760479044,
'002123.XSHE': 0.0029940119760479044,
'002145.XSHE': 0.0029940119760479044,
'002178.XSHE': 0.0029940119760479044,
'002185.XSHE': 0.0029940119760479044,
'002186.XSHE': 0.0029940119760479044,
'002187.XSHE': 0.0029940119760479044,
'002216.XSHE': 0.0029940119760479044,
'002241.XSHE': 0.0029940119760479044,
'002251.XSHE': 0.0029940119760479044,
'002275.XSHE': 0.0029940119760479044,
'002283.XSHE': 0.0029940119760479044,
'002284.XSHE': 0.0029940119760479044,
'002303.XSHE': 0.0029940119760479044,
'002305.XSHE': 0.0029940119760479044,
'002325.XSHE': 0.0029940119760479044,
'002328.XSHE': 0.0029940119760479044,
'002334.XSHE': 0.0029940119760479044,
'002339.XSHE': 0.0029940119760479044,
'002344.XSHE': 0.0029940119760479044,
'002360.XSHE': 0.0029940119760479044,
'002386.XSHE': 0.0029940119760479044,
'002391.XSHE': 0.0029940119760479044,
'002393.XSHE': 0.0029940119760479044,
'002394.XSHE': 0.0029940119760479044,
'002420.XSHE': 0.0029940119760479044,
'002429.XSHE': 0.0029940119760479044,
'002451.XSHE': 0.0029940119760479044,
'002461.XSHE': 0.0029940119760479044,
'002479.XSHE': 0.0029940119760479044,
'002482.XSHE': 0.0029940119760479044,
'002495.XSHE': 0.0029940119760479044,
'002509.XSHE': 0.0029940119760479044,
'002534.XSHE': 0.0029940119760479044,
'002535.XSHE': 0.0029940119760479044,
'002561.XSHE': 0.0029940119760479044,
'002588.XSHE': 0.0029940119760479044,
'002593.XSHE': 0.0029940119760479044,
'002600.XSHE': 0.0029940119760479044,
'002601.XSHE': 0.0029940119760479044,
'002623.XSHE': 0.0029940119760479044,
'002626.XSHE': 0.0029940119760479044,
'002641.XSHE': 0.0029940119760479044,
'002676.XSHE': 0.0029940119760479044,
'002694.XSHE': 0.0029940119760479044,
'002708.XSHE': 0.0029940119760479044,
'002713.XSHE': 0.0029940119760479044,
'002732.XSHE': 0.0029940119760479044,
'002760.XSHE': 0.0029940119760479044,
'002763.XSHE': 0.0029940119760479044,
'002783.XSHE': 0.0029940119760479044,
'002818.XSHE': 0.0029940119760479044,
'002820.XSHE': 0.0029940119760479044,
'002823.XSHE': 0.0029940119760479044,
'002868.XSHE': 0.0029940119760479044,
'002884.XSHE': 0.0029940119760479044,
'300039.XSHE': 0.0029940119760479044,
'300057.XSHE': 0.0029940119760479044,
'300069.XSHE': 0.0029940119760479044,
'300113.XSHE': 0.0029940119760479044,
'300185.XSHE': 0.0029940119760479044,
'300204.XSHE': 0.0029940119760479044,
'300216.XSHE': 0.0029940119760479044,
'300218.XSHE': 0.0029940119760479044,
'300227.XSHE': 0.0029940119760479044,
'300371.XSHE': 0.0029940119760479044,
'300376.XSHE': 0.0029940119760479044,
'300385.XSHE': 0.0029940119760479044,
'300415.XSHE': 0.0029940119760479044,
'300446.XSHE': 0.0029940119760479044,
'300512.XSHE': 0.0029940119760479044,
'300528.XSHE': 0.0029940119760479044,
'300575.XSHE': 0.0029940119760479044,
'300599.XSHE': 0.0029940119760479044,
'300676.XSHE': 0.0029940119760479044,
'300695.XSHE': 0.0029940119760479044,
'600010.XSHG': 0.0029940119760479044,
'600012.XSHG': 0.0029940119760479044,
'600017.XSHG': 0.0029940119760479044,
'600018.XSHG': 0.0029940119760479044,
'600020.XSHG': 0.0029940119760479044,
'600026.XSHG': 0.0029940119760479044,
'600031.XSHG': 0.0029940119760479044,
'600033.XSHG': 0.0029940119760479044,
'600035.XSHG': 0.0029940119760479044,
'600054.XSHG': 0.0029940119760479044,
'600064.XSHG': 0.0029940119760479044,
'600066.XSHG': 0.0029940119760479044,
'600073.XSHG': 0.0029940119760479044,
'600077.XSHG': 0.0029940119760479044,
'600081.XSHG': 0.0029940119760479044,
'600120.XSHG': 0.0029940119760479044,
'600126.XSHG': 0.0029940119760479044,
'600143.XSHG': 0.0029940119760479044,
'600153.XSHG': 0.0029940119760479044,
'600160.XSHG': 0.0029940119760479044,
'600169.XSHG': 0.0029940119760479044,
'600170.XSHG': 0.0029940119760479044,
'600173.XSHG': 0.0029940119760479044,
'600180.XSHG': 0.0029940119760479044,
'600185.XSHG': 0.0029940119760479044,
'600190.XSHG': 0.0029940119760479044,
'600210.XSHG': 0.0029940119760479044,
'600219.XSHG': 0.0029940119760479044,
'600223.XSHG': 0.0029940119760479044,
'600229.XSHG': 0.0029940119760479044,
'600252.XSHG': 0.0029940119760479044,
'600261.XSHG': 0.0029940119760479044,
'600266.XSHG': 0.0029940119760479044,
'600269.XSHG': 0.0029940119760479044,
'600279.XSHG': 0.0029940119760479044,
'600284.XSHG': 0.0029940119760479044,
'600287.XSHG': 0.0029940119760479044,
'600290.XSHG': 0.0029940119760479044,
'600300.XSHG': 0.0029940119760479044,
'600308.XSHG': 0.0029940119760479044,
'600323.XSHG': 0.0029940119760479044,
'600325.XSHG': 0.0029940119760479044,
'600327.XSHG': 0.0029940119760479044,
'600361.XSHG': 0.0029940119760479044,
'600362.XSHG': 0.0029940119760479044,
'600367.XSHG': 0.0029940119760479044,
'600381.XSHG': 0.0029940119760479044,
'600396.XSHG': 0.0029940119760479044,
'600420.XSHG': 0.0029940119760479044,
'600422.XSHG': 0.0029940119760479044,
'600461.XSHG': 0.0029940119760479044,
'600466.XSHG': 0.0029940119760479044,
'600497.XSHG': 0.0029940119760479044,
'600500.XSHG': 0.0029940119760479044,
'600557.XSHG': 0.0029940119760479044,
'600561.XSHG': 0.0029940119760479044,
'600565.XSHG': 0.0029940119760479044,
'600567.XSHG': 0.0029940119760479044,
'600580.XSHG': 0.0029940119760479044,
'600582.XSHG': 0.0029940119760479044,
'600586.XSHG': 0.0029940119760479044,
'600587.XSHG': 0.0029940119760479044,
'600589.XSHG': 0.0029940119760479044,
'600594.XSHG': 0.0029940119760479044,
'600595.XSHG': 0.0029940119760479044,
'600597.XSHG': 0.0029940119760479044,
'600600.XSHG': 0.0029940119760479044,
'600606.XSHG': 0.0029940119760479044,
'600611.XSHG': 0.0029940119760479044,
'600616.XSHG': 0.0029940119760479044,
'600618.XSHG': 0.0029940119760479044,
'600624.XSHG': 0.0029940119760479044,
'600628.XSHG': 0.0029940119760479044,
'600649.XSHG': 0.0029940119760479044,
'600657.XSHG': 0.0029940119760479044,
'600665.XSHG': 0.0029940119760479044,
'600667.XSHG': 0.0029940119760479044,
'600676.XSHG': 0.0029940119760479044,
'600684.XSHG': 0.0029940119760479044,
'600691.XSHG': 0.0029940119760479044,
'600694.XSHG': 0.0029940119760479044,
'600697.XSHG': 0.0029940119760479044,
'600705.XSHG': 0.0029940119760479044,
'600708.XSHG': 0.0029940119760479044,
'600710.XSHG': 0.0029940119760479044,
'600716.XSHG': 0.0029940119760479044,
'600717.XSHG': 0.0029940119760479044,
'600723.XSHG': 0.0029940119760479044,
'600742.XSHG': 0.0029940119760479044,
'600743.XSHG': 0.0029940119760479044,
'600780.XSHG': 0.0029940119760479044,
'600790.XSHG': 0.0029940119760479044,
'600795.XSHG': 0.0029940119760479044,
'600827.XSHG': 0.0029940119760479044,
'600835.XSHG': 0.0029940119760479044,
'600839.XSHG': 0.0029940119760479044,
'600846.XSHG': 0.0029940119760479044,
'600863.XSHG': 0.0029940119760479044,
'600873.XSHG': 0.0029940119760479044,
'600874.XSHG': 0.0029940119760479044,
'600875.XSHG': 0.0029940119760479044,
'600881.XSHG': 0.0029940119760479044,
'600887.XSHG': 0.0029940119760479044,
'600894.XSHG': 0.0029940119760479044,
'600897.XSHG': 0.0029940119760479044,
'600963.XSHG': 0.0029940119760479044,
'600966.XSHG': 0.0029940119760479044,
'600969.XSHG': 0.0029940119760479044,
'600978.XSHG': 0.0029940119760479044,
'600981.XSHG': 0.0029940119760479044,
'600987.XSHG': 0.0029940119760479044,
'600995.XSHG': 0.0029940119760479044,
'601000.XSHG': 0.0029940119760479044,
'601007.XSHG': 0.0029940119760479044,
'601016.XSHG': 0.0029940119760479044,
'601107.XSHG': 0.0029940119760479044,
'601126.XSHG': 0.0029940119760479044,
'601158.XSHG': 0.0029940119760479044,
'601163.XSHG': 0.0029940119760479044,
'601168.XSHG': 0.0029940119760479044,
'601169.XSHG': 0.0029940119760479044,
'601177.XSHG': 0.0029940119760479044,
'601200.XSHG': 0.0029940119760479044,
'601208.XSHG': 0.0029940119760479044,
'601216.XSHG': 0.0029940119760479044,
'601326.XSHG': 0.0029940119760479044,
'601333.XSHG': 0.0029940119760479044,
'601360.XSHG': 0.0029940119760479044,
'601366.XSHG': 0.0029940119760479044,
'601368.XSHG': 0.0029940119760479044,
'601388.XSHG': 0.0029940119760479044,
'601515.XSHG': 0.0029940119760479044,
'601566.XSHG': 0.0029940119760479044,
'601636.XSHG': 0.0029940119760479044,
'601669.XSHG': 0.0029940119760479044,
'601678.XSHG': 0.0029940119760479044,
'601866.XSHG': 0.0029940119760479044,
'601886.XSHG': 0.0029940119760479044,
'601898.XSHG': 0.0029940119760479044,
'601899.XSHG': 0.0029940119760479044,
'601919.XSHG': 0.0029940119760479044,
'601966.XSHG': 0.0029940119760479044,
'601985.XSHG': 0.0029940119760479044,
'601988.XSHG': 0.0029940119760479044,
'601992.XSHG': 0.0029940119760479044,
'601998.XSHG': 0.0029940119760479044,
'603000.XSHG': 0.0029940119760479044,
'603020.XSHG': 0.0029940119760479044,
'603100.XSHG': 0.0029940119760479044,
'603123.XSHG': 0.0029940119760479044,
'603156.XSHG': 0.0029940119760479044,
'603166.XSHG': 0.0029940119760479044,
'603167.XSHG': 0.0029940119760479044,
'603178.XSHG': 0.0029940119760479044,
'603198.XSHG': 0.0029940119760479044,
'603208.XSHG': 0.0029940119760479044,
'603298.XSHG': 0.0029940119760479044,
'603518.XSHG': 0.0029940119760479044,
'603556.XSHG': 0.0029940119760479044,
'603567.XSHG': 0.0029940119760479044,
'603585.XSHG': 0.0029940119760479044,
'603588.XSHG': 0.0029940119760479044,
'603599.XSHG': 0.0029940119760479044,
'603611.XSHG': 0.0029940119760479044,
'603730.XSHG': 0.0029940119760479044,
'603766.XSHG': 0.0029940119760479044,
'603768.XSHG': 0.0029940119760479044,
'603797.XSHG': 0.0029940119760479044,
'603817.XSHG': 0.0029940119760479044,
'603898.XSHG': 0.0029940119760479044,
'603919.XSHG': 0.0029940119760479044,
'603987.XSHG': 0.0029940119760479044,
'603993.XSHG': 0.0029940119760479044}
In [30]:

top_50_portf = OrderedDict()
for date, df in factor.groupby(level='date'):
top_50_portf[date] = pd.Series([1/50], index=df.nlargest(50).index.get_level_values('symbol'))
In [35]:

net_value(rebalance_dates, top_50_portf, excess_returns).plot(figsize=(18, 6))
Out[35]:

In [ ]:

?
In [36]:

top_10_portf = OrderedDict()
for date, df in factor.groupby(level='date'):
top_10_portf[date] = pd.Series([1/10], index=df.nlargest(10).index.get_level_values('symbol'))
In [38]:

net_value(rebalance_dates, top_10_portf, excess_returns).plot(figsize=(18, 6))
Out[38]:

In [ ]:

?

分享到:
举报财经168客户端下载

全部回复

0/140

投稿 您想发表你的观点和看法?

更多人气分析师

  • 张亦巧

    人气2200文章4145粉丝45

    暂无个人简介信息

  • 王启蒙现货黄金

    人气304文章3275粉丝8

    本人做分析师以来,并专注于贵金属投资市场,尤其是在现货黄金...

  • 指导老师

    人气1864文章4423粉丝52

    暂无个人简介信息

  • 李冉晴

    人气2320文章3821粉丝34

    李冉晴,专业现贷实盘分析师。

  • 梁孟梵

    人气2176文章3177粉丝39

    qq:2294906466 了解群指导添加微信mfmacd

  • 张迎妤

    人气1896文章3305粉丝34

    个人专注于行情技术分析,消息面解读剖析,给予您第一时间方向...

  • 金泰铬J

    人气2328文章3925粉丝51

    投资问答解咨询金泰铬V/信tgtg67即可获取每日的实时资讯、行情...

  • 金算盘

    人气2696文章7761粉丝125

    高级分析师,混过名校,厮杀于股市和期货、证券市场多年,专注...

  • 金帝财神

    人气4760文章8329粉丝119

    本文由资深分析师金帝财神微信:934295330,指导黄金,白银,...

FX168财经

FX168财经学院

FX168财经

FX168北美