import pandas as pd
df=pd.read_csv('hs2年,季度平均财务数据.csv')
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Unnamed: 0 | eps | inc_net_profit_annual | inc_operation_profit_annual | inc_revenue_annual | mean_price | net_operate_cash_flow | net_profit | net_profit_margin | operating_profit | operating_profit_to_profit | operating_revenue | retained_profit | roe | surplus_reserve_fund | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2016-03-31 | 0.4253 | 47.5400 | 43.3600 | 10.0800 | 8.271833 | 5.926800e+10 | 6.086000e+09 | 22.1100 | 8.014000e+09 | 87.8300 | 2.753200e+10 | 5.901900e+10 | 3.4900 | 8.521000e+09 |
1 | 2016-06-30 | 0.3614 | 1.9700 | 1.6000 | -1.0700 | 8.370500 | -9.246600e+10 | 6.206000e+09 | 22.7900 | 8.142000e+09 | 86.8100 | 2.723700e+10 | 6.303600e+10 | 3.2700 | 8.521000e+09 |
2 | 2016-09-30 | 0.3700 | 3.5600 | 3.0300 | -0.1400 | 8.921500 | -1.197440e+11 | 6.427000e+09 | 23.6300 | 8.389000e+09 | 462.9000 | 2.719900e+10 | 6.946300e+10 | 3.3000 | 8.521000e+09 |
3 | 2016-12-31 | 0.2260 | -39.6300 | -37.6100 | -5.3400 | 8.975500 | 1.639310e+11 | 3.880000e+09 | 15.0700 | 5.234000e+09 | -493.6900 | 2.574700e+10 | 6.414300e+10 | 1.9400 | 1.078100e+10 |
4 | 2017-03-31 | 0.3619 | 60.1546 | 57.2029 | 7.6320 | 9.028333 | -1.150080e+11 | 6.214000e+09 | 22.4235 | 8.228000e+09 | 92.3086 | 2.771200e+10 | 6.948300e+10 | 3.0319 | 1.078100e+10 |
5 | 2017-06-30 | 0.3692 | 2.0277 | 0.1458 | -4.8751 | 8.753667 | -1.317200e+10 | 6.340000e+09 | 24.0507 | 8.240000e+09 | 97.5616 | 2.636100e+10 | 7.311000e+10 | 3.0249 | 1.078100e+10 |
6 | 2017-09-30 | 0.3800 | 4.0852 | 3.5437 | -2.2799 | 10.768917 | -2.980700e+10 | 6.599000e+09 | 25.6172 | 8.532000e+09 | 98.0487 | 2.576000e+10 | 7.970900e+10 | 3.0724 | 1.078100e+10 |
7 | 2017-12-31 | 0.2351 | -38.8392 | -38.7834 | 0.7492 | 12.431917 | 3.920700e+10 | 4.036000e+09 | 15.5512 | 5.223000e+09 | 102.8363 | 2.595300e+10 | 7.966100e+10 | 1.8339 | 1.078100e+10 |
8 | 2016-03-31 | 0.0755 | -92.3800 | -92.0700 | -87.4000 | 21.820000 | -1.072613e+10 | 1.249823e+09 | 8.5500 | 1.646601e+09 | 74.7700 | 1.461131e+10 | 5.343109e+10 | 0.8300 | 2.806877e+10 |
9 | 2016-06-30 | 0.4093 | 367.6500 | 401.5200 | 311.9000 | 21.820000 | 3.652334e+10 | 5.844807e+09 | 9.7100 | 8.258004e+09 | 88.0300 | 6.018398e+10 | 5.000097e+10 | 4.5600 | 2.806877e+10 |
10 | 2016-09-30 | 0.2600 | -28.2200 | -28.7600 | -29.7800 | 20.037500 | 1.718868e+10 | 4.195622e+09 | 9.9300 | 5.882695e+09 | 83.2500 | 4.225951e+10 | 5.291205e+10 | 2.9400 | 2.806877e+10 |
11 | 2016-12-31 | 1.1559 | 306.6100 | 295.0000 | 192.0600 | 23.069833 | -3.419766e+09 | 1.706000e+10 | 13.8200 | 2.323648e+10 | 87.8800 | 1.234224e+11 | 6.120027e+10 | 11.9300 | 3.254077e+10 |
12 | 2017-03-31 | 0.0630 | -93.4984 | -93.2907 | -84.9385 | 19.356917 | -9.523936e+09 | 1.109171e+09 | 5.9667 | 1.559008e+09 | 82.6764 | 1.858923e+10 | 6.189568e+10 | 0.6116 | 3.254077e+10 |
13 | 2017-06-30 | 0.5985 | 706.3518 | 676.3041 | 175.5426 | 19.283500 | 3.137410e+10 | 8.943819e+09 | 17.4611 | 1.210265e+10 | 88.4716 | 5.122125e+10 | 5.978206e+10 | 5.8314 | 3.254077e+10 |
14 | 2017-09-30 | 0.3430 | -46.7393 | -41.9464 | -7.6750 | 23.069000 | -5.143923e+09 | 4.763538e+09 | 10.0730 | 7.026021e+09 | 72.9184 | 4.729003e+10 | 6.357034e+10 | 3.3083 | 3.254077e+10 |
15 | 2017-12-31 | 1.5364 | 370.0679 | 328.7667 | 166.0109 | 27.828917 | 6.561660e+10 | 2.239186e+10 | 17.8001 | 3.012524e+10 | 90.1865 | 1.257966e+11 | 7.717185e+10 | 13.6205 | 3.590007e+10 |
16 | 2016-03-31 | 0.2286 | 25.6000 | 344.3000 | -30.9700 | 14.935583 | 3.945521e+09 | 1.061152e+09 | 4.8500 | 3.142410e+08 | 31.3500 | 2.185851e+10 | 1.462773e+10 | 3.1800 | 2.022709e+09 |
17 | 2016-06-30 | 0.1966 | 6.2200 | -42.3500 | 18.4800 | 13.704167 | -1.590590e+09 | 1.127202e+09 | 4.3500 | 1.811750e+08 | -19.1500 | 2.589879e+10 | 1.544462e+10 | 2.6800 | 2.022709e+09 |
18 | 2016-09-30 | 0.2600 | 9.3800 | 152.2100 | -8.0800 | 14.698833 | -1.135629e+09 | 1.232917e+09 | 5.1800 | 4.569420e+08 | -9.7900 | 2.380670e+10 | 1.549858e+10 | 3.4900 | 2.022709e+09 |
19 | 2016-12-31 | -1.2465 | -491.6800 | -53.3400 | 24.6300 | 15.888917 | 4.040904e+09 | -4.829140e+09 | -16.2800 | 2.131900e+08 | 10.7700 | 2.966918e+10 | 1.028224e+10 | -17.9600 | 2.022709e+09 |
20 | 2017-03-31 | 0.2899 | 127.2813 | 258.3930 | -13.2278 | 15.712500 | -9.711650e+08 | 1.317453e+09 | 5.1174 | 7.640580e+08 | 44.2163 | 2.574461e+10 | 1.149584e+10 | 4.4960 | 2.022709e+09 |
21 | 2017-06-30 | 0.2576 | -6.9596 | 231.4621 | 9.7938 | 19.197167 | -3.235387e+09 | 1.225763e+09 | 4.3365 | 2.532563e+09 | 75.0814 | 2.826598e+10 | 1.257511e+10 | 3.8153 | 2.022709e+09 |
22 | 2017-09-30 | 0.3800 | 42.8370 | -21.4213 | -20.1544 | 23.743083 | 1.036069e+09 | 1.750843e+09 | 7.7577 | 1.990054e+09 | -37.8305 | 2.256914e+10 | 1.418689e+10 | 5.3856 | 2.022709e+09 |
23 | 2017-12-31 | 0.1583 | -37.6139 | -26.3208 | 42.8301 | 34.003917 | 1.039046e+10 | 1.092283e+09 | 3.3884 | 1.466255e+09 | -0.6598 | 3.223553e+10 | 1.466768e+10 | 2.1228 | 2.205436e+09 |
24 | 2016-03-31 | 0.0732 | -73.1400 | -69.4400 | -62.8300 | 6.492583 | -1.397724e+09 | 6.400020e+08 | 11.6400 | 9.254854e+08 | 95.1500 | 5.500350e+09 | 2.238587e+10 | 1.5700 | 2.543815e+09 |
25 | 2016-06-30 | 0.1193 | 67.2200 | 48.5900 | 8.3500 | 6.177417 | 6.076731e+08 | 1.070220e+09 | 17.9600 | 1.375193e+09 | 77.3400 | 5.959879e+09 | 2.279104e+10 | 2.5500 | 2.543815e+09 |
26 | 2016-09-30 | 0.1630 | 33.5400 | 21.4400 | 27.3400 | 6.598250 | 1.097621e+10 | 1.429121e+09 | 18.8300 | 1.670046e+09 | 93.8000 | 7.589555e+09 | 2.412827e+10 | 3.4200 | 2.543815e+09 |
27 | 2016-12-31 | 0.4840 | 191.9000 | 175.4600 | 116.5000 | 6.704000 | -5.782313e+09 | 4.171598e+09 | 25.3900 | 4.600311e+09 | 80.8100 | 1.643132e+10 | 2.783806e+10 | 9.5200 | 2.805448e+09 |
28 | 2017-03-31 | 0.0923 | -80.5276 | -75.4480 | -62.5386 | 6.803750 | -7.510819e+09 | 8.123113e+08 | 13.1967 | 1.129467e+09 | 93.1227 | 6.155396e+09 | 2.859505e+10 | 1.7143 | 2.805448e+09 |
29 | 2017-06-30 | 0.1190 | 21.9382 | 29.5916 | 24.0133 | 8.113583 | -1.018259e+10 | 9.905180e+08 | 12.9759 | 1.463694e+09 | 96.4607 | 7.633513e+09 | 2.876039e+10 | 2.1770 | 2.805448e+09 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2252 | 2016-09-30 | 0.0800 | 4422.4400 | 333.8700 | 18.7900 | 25.900667 | 6.189952e+07 | 3.913605e+07 | 2.9600 | 4.992677e+07 | 57.8100 | 1.322482e+09 | 5.488654e+08 | 1.7500 | 9.548766e+07 |
2253 | 2016-12-31 | 0.0980 | 41.7100 | 62.7200 | 5.9500 | 23.780000 | 7.941974e+08 | 5.546059e+07 | 3.9600 | 8.124189e+07 | 138.1700 | 1.401104e+09 | 6.000031e+08 | 1.7100 | 1.024114e+08 |
2254 | 2017-03-31 | 0.4246 | 348.5904 | 316.1423 | 24.7000 | 32.809833 | -1.637676e+08 | 2.487909e+08 | 14.2396 | 3.380819e+08 | 100.0001 | 1.747176e+09 | 8.516644e+08 | 5.6251 | 1.024114e+08 |
2255 | 2017-06-30 | 0.7141 | 70.6137 | 48.3772 | 16.8343 | 34.699167 | -4.569780e+08 | 4.244713e+08 | 20.7942 | 5.016365e+08 | 97.5342 | 2.041301e+09 | 1.274913e+09 | 8.8329 | 1.024114e+08 |
2256 | 2017-09-30 | 0.7100 | -0.4746 | 0.6261 | 15.4893 | 52.392000 | -5.986665e+08 | 4.224566e+08 | 17.9198 | 5.047771e+08 | 104.4021 | 2.357484e+09 | 1.697863e+09 | 8.2345 | 1.024114e+08 |
2257 | 2017-12-31 | 1.3458 | 86.9817 | 79.7083 | 48.7714 | 60.570167 | -5.751204e+08 | 7.899165e+08 | 22.5223 | 9.071263e+08 | 100.5726 | 3.507261e+09 | 2.451631e+09 | 14.1027 | 1.462961e+08 |
2258 | 2017-03-31 | 0.1338 | NaN | NaN | NaN | 82.927500 | -1.867580e+08 | 5.505919e+07 | 3.8005 | 6.943522e+07 | 97.6214 | 1.448753e+09 | 1.789010e+09 | 1.4188 | 1.243390e+08 |
2259 | 2017-06-30 | 0.8525 | 551.1253 | 425.4695 | 67.4591 | 107.537750 | 8.018877e+08 | 3.585043e+08 | 14.7772 | 3.648609e+08 | 88.9370 | 2.426069e+09 | 2.147579e+09 | 6.8019 | 1.243390e+08 |
2260 | 2017-09-30 | 1.2900 | 47.9250 | 77.3454 | 24.8382 | 102.349333 | 2.840959e+08 | 5.303175e+08 | 17.5100 | 6.470640e+08 | 97.7817 | 3.028661e+09 | 2.678022e+09 | 9.0454 | 1.243390e+08 |
2261 | 2017-12-31 | 0.8455 | -32.9753 | -33.2852 | -7.3288 | 115.926917 | 9.786372e+08 | 3.554438e+08 | 12.6641 | 4.316878e+08 | 84.6964 | 2.806695e+09 | 2.966904e+09 | 5.7561 | 1.910564e+08 |
2262 | 2016-12-31 | 0.7493 | -21.6300 | -20.4000 | -13.8400 | 78.570484 | 1.729370e+08 | 5.119535e+08 | 15.4300 | 5.810783e+08 | 81.1000 | 3.318619e+09 | 7.748695e+09 | 4.8600 | 3.314493e+08 |
2263 | 2017-03-31 | 0.3262 | -56.9138 | -54.7474 | -26.8197 | 64.234083 | 4.605382e+08 | 2.205816e+08 | 9.0828 | 2.629532e+08 | 92.6879 | 2.428574e+09 | 7.971078e+09 | 1.7487 | 3.314493e+08 |
2264 | 2017-06-30 | 0.6684 | 107.1505 | 116.9275 | 36.8238 | 55.238250 | 8.443235e+08 | 4.569359e+08 | 13.7513 | 5.704178e+08 | 95.5545 | 3.322868e+09 | 7.326335e+09 | 3.6437 | 3.314493e+08 |
2265 | 2017-09-30 | 0.6630 | -0.9928 | -5.6119 | 11.1736 | 50.384417 | 3.536411e+08 | 4.523996e+08 | 12.2464 | 5.384065e+08 | 99.5631 | 3.694151e+09 | 7.778353e+09 | 3.6427 | 3.314493e+08 |
2266 | 2017-12-31 | 0.7449 | 12.5159 | -28.2514 | 19.6033 | 45.485250 | 3.034728e+08 | 5.090213e+08 | 11.5207 | 3.862992e+08 | 60.2863 | 4.418326e+09 | 8.276772e+09 | 3.9406 | 3.409000e+08 |
2267 | 2016-06-30 | 0.7217 | 49.1500 | 22.2700 | 12.3100 | NaN | 3.101109e+07 | 5.469582e+07 | 15.7800 | 4.729878e+07 | 93.4700 | 3.465495e+08 | 3.835460e+08 | 8.5200 | 2.848906e+07 |
2268 | 2016-09-30 | 0.6600 | -0.2500 | -2.5200 | 13.5200 | 43.327667 | 3.466695e+07 | 5.455966e+07 | 13.8700 | 4.610903e+07 | 76.7200 | 3.934187e+08 | 4.382496e+08 | 5.7600 | 2.848906e+07 |
2269 | 2016-12-31 | 0.3182 | -47.2700 | -35.0000 | 11.9500 | 63.220000 | 4.948543e+07 | 2.876988e+07 | 6.5300 | 2.997250e+07 | 86.4600 | 4.404252e+08 | 4.526373e+08 | 2.5300 | 4.591953e+07 |
2270 | 2017-03-31 | 0.6949 | 142.0712 | 151.4006 | 2.7122 | 66.899417 | -1.276328e+07 | 6.964360e+07 | 15.3953 | 7.535105e+07 | 95.2615 | 4.523703e+08 | 5.221263e+08 | 5.2954 | 4.591953e+07 |
2271 | 2017-06-30 | 0.5425 | 58.7974 | 65.6053 | 7.5063 | 64.560333 | 1.466835e+08 | 1.105922e+08 | 22.7403 | 1.247853e+08 | 87.6914 | 4.863266e+08 | 5.790817e+08 | 7.8822 | 4.591953e+07 |
2272 | 2017-09-30 | 0.8000 | 44.0255 | 45.6430 | 18.9271 | 64.561333 | 1.053011e+08 | 1.592810e+08 | 27.5394 | 1.817411e+08 | 75.2373 | 5.783742e+08 | 7.390937e+08 | 10.5010 | 4.591953e+07 |
2273 | 2017-12-31 | 0.2860 | -63.5692 | -69.9259 | -11.3657 | 109.730583 | -4.151713e+07 | 5.802732e+07 | 11.3194 | 5.465697e+07 | 86.3494 | 5.126378e+08 | 7.675425e+08 | 3.4499 | 7.543034e+07 |
2274 | 2016-03-31 | 0.0084 | 28.5500 | 29.3800 | 13.2200 | 3.478917 | 2.648065e+08 | 1.346673e+08 | 11.6400 | 2.324076e+08 | 85.6200 | 1.157333e+09 | 3.128069e+09 | 0.8100 | 7.860501e+08 |
2275 | 2016-06-30 | 0.0220 | 172.4500 | 63.2700 | -4.7400 | 3.649667 | 2.701510e+08 | 3.668949e+08 | 33.2800 | 3.794460e+08 | 66.4800 | 1.102519e+09 | 3.076703e+09 | 2.1300 | 7.860501e+08 |
2276 | 2016-09-30 | 0.0043 | -81.8300 | -65.1100 | 12.1200 | 3.999250 | 3.306001e+08 | 6.664981e+07 | 5.3900 | 1.323896e+08 | 67.1700 | 1.236185e+09 | 3.148299e+09 | 0.4100 | 7.860501e+08 |
2277 | 2016-12-31 | 0.0245 | 576.7100 | -94.7700 | 179.3700 | 3.865833 | 2.049269e+09 | 4.510263e+08 | 13.0600 | 6.925479e+06 | -1.2500 | 3.453534e+09 | 3.508789e+09 | 2.2700 | 8.400989e+08 |
2278 | 2017-03-31 | 0.0354 | 121.4284 | 21460.4199 | 67.4380 | 4.363417 | 1.427245e+09 | 9.987004e+08 | 17.2710 | 1.493162e+09 | 98.0996 | 5.782531e+09 | 4.106009e+09 | 3.1374 | 8.400989e+08 |
2279 | 2017-06-30 | 0.0141 | -62.8770 | -58.4281 | 1.5543 | 4.458667 | 2.054166e+09 | 3.707473e+08 | 6.3134 | 6.207354e+08 | 155.7238 | 5.872410e+09 | 3.752876e+09 | 1.2508 | 8.400989e+08 |
2280 | 2017-09-30 | 0.0400 | 145.8937 | 114.6130 | 3.0512 | 7.000000 | 2.185045e+09 | 9.116443e+08 | 15.0645 | 1.332179e+09 | 100.5395 | 6.051591e+09 | 4.522277e+09 | 2.7485 | 8.400989e+08 |
2281 | 2017-12-31 | 0.0520 | 44.1926 | 44.9506 | 6.4353 | 6.722417 | 2.762356e+09 | 1.314523e+09 | 20.4086 | 1.931002e+09 | 102.5679 | 6.441026e+09 | 5.517441e+09 | 2.9780 | 9.681907e+08 |
2282 rows × 15 columns
df.dropna(axis=0, how='any',inplace=True)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
Unnamed: 0 | eps | inc_net_profit_annual | inc_operation_profit_annual | inc_revenue_annual | mean_price | net_operate_cash_flow | net_profit | net_profit_margin | operating_profit | operating_profit_to_profit | operating_revenue | retained_profit | roe | surplus_reserve_fund | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 2016-03-31 | 0.4253 | 47.5400 | 43.3600 | 10.0800 | 8.271833 | 5.926800e+10 | 6.086000e+09 | 22.1100 | 8.014000e+09 | 87.8300 | 2.753200e+10 | 5.901900e+10 | 3.4900 | 8.521000e+09 |
1 | 2016-06-30 | 0.3614 | 1.9700 | 1.6000 | -1.0700 | 8.370500 | -9.246600e+10 | 6.206000e+09 | 22.7900 | 8.142000e+09 | 86.8100 | 2.723700e+10 | 6.303600e+10 | 3.2700 | 8.521000e+09 |
2 | 2016-09-30 | 0.3700 | 3.5600 | 3.0300 | -0.1400 | 8.921500 | -1.197440e+11 | 6.427000e+09 | 23.6300 | 8.389000e+09 | 462.9000 | 2.719900e+10 | 6.946300e+10 | 3.3000 | 8.521000e+09 |
3 | 2016-12-31 | 0.2260 | -39.6300 | -37.6100 | -5.3400 | 8.975500 | 1.639310e+11 | 3.880000e+09 | 15.0700 | 5.234000e+09 | -493.6900 | 2.574700e+10 | 6.414300e+10 | 1.9400 | 1.078100e+10 |
4 | 2017-03-31 | 0.3619 | 60.1546 | 57.2029 | 7.6320 | 9.028333 | -1.150080e+11 | 6.214000e+09 | 22.4235 | 8.228000e+09 | 92.3086 | 2.771200e+10 | 6.948300e+10 | 3.0319 | 1.078100e+10 |
5 | 2017-06-30 | 0.3692 | 2.0277 | 0.1458 | -4.8751 | 8.753667 | -1.317200e+10 | 6.340000e+09 | 24.0507 | 8.240000e+09 | 97.5616 | 2.636100e+10 | 7.311000e+10 | 3.0249 | 1.078100e+10 |
6 | 2017-09-30 | 0.3800 | 4.0852 | 3.5437 | -2.2799 | 10.768917 | -2.980700e+10 | 6.599000e+09 | 25.6172 | 8.532000e+09 | 98.0487 | 2.576000e+10 | 7.970900e+10 | 3.0724 | 1.078100e+10 |
7 | 2017-12-31 | 0.2351 | -38.8392 | -38.7834 | 0.7492 | 12.431917 | 3.920700e+10 | 4.036000e+09 | 15.5512 | 5.223000e+09 | 102.8363 | 2.595300e+10 | 7.966100e+10 | 1.8339 | 1.078100e+10 |
8 | 2016-03-31 | 0.0755 | -92.3800 | -92.0700 | -87.4000 | 21.820000 | -1.072613e+10 | 1.249823e+09 | 8.5500 | 1.646601e+09 | 74.7700 | 1.461131e+10 | 5.343109e+10 | 0.8300 | 2.806877e+10 |
9 | 2016-06-30 | 0.4093 | 367.6500 | 401.5200 | 311.9000 | 21.820000 | 3.652334e+10 | 5.844807e+09 | 9.7100 | 8.258004e+09 | 88.0300 | 6.018398e+10 | 5.000097e+10 | 4.5600 | 2.806877e+10 |
10 | 2016-09-30 | 0.2600 | -28.2200 | -28.7600 | -29.7800 | 20.037500 | 1.718868e+10 | 4.195622e+09 | 9.9300 | 5.882695e+09 | 83.2500 | 4.225951e+10 | 5.291205e+10 | 2.9400 | 2.806877e+10 |
11 | 2016-12-31 | 1.1559 | 306.6100 | 295.0000 | 192.0600 | 23.069833 | -3.419766e+09 | 1.706000e+10 | 13.8200 | 2.323648e+10 | 87.8800 | 1.234224e+11 | 6.120027e+10 | 11.9300 | 3.254077e+10 |
12 | 2017-03-31 | 0.0630 | -93.4984 | -93.2907 | -84.9385 | 19.356917 | -9.523936e+09 | 1.109171e+09 | 5.9667 | 1.559008e+09 | 82.6764 | 1.858923e+10 | 6.189568e+10 | 0.6116 | 3.254077e+10 |
13 | 2017-06-30 | 0.5985 | 706.3518 | 676.3041 | 175.5426 | 19.283500 | 3.137410e+10 | 8.943819e+09 | 17.4611 | 1.210265e+10 | 88.4716 | 5.122125e+10 | 5.978206e+10 | 5.8314 | 3.254077e+10 |
14 | 2017-09-30 | 0.3430 | -46.7393 | -41.9464 | -7.6750 | 23.069000 | -5.143923e+09 | 4.763538e+09 | 10.0730 | 7.026021e+09 | 72.9184 | 4.729003e+10 | 6.357034e+10 | 3.3083 | 3.254077e+10 |
15 | 2017-12-31 | 1.5364 | 370.0679 | 328.7667 | 166.0109 | 27.828917 | 6.561660e+10 | 2.239186e+10 | 17.8001 | 3.012524e+10 | 90.1865 | 1.257966e+11 | 7.717185e+10 | 13.6205 | 3.590007e+10 |
16 | 2016-03-31 | 0.2286 | 25.6000 | 344.3000 | -30.9700 | 14.935583 | 3.945521e+09 | 1.061152e+09 | 4.8500 | 3.142410e+08 | 31.3500 | 2.185851e+10 | 1.462773e+10 | 3.1800 | 2.022709e+09 |
17 | 2016-06-30 | 0.1966 | 6.2200 | -42.3500 | 18.4800 | 13.704167 | -1.590590e+09 | 1.127202e+09 | 4.3500 | 1.811750e+08 | -19.1500 | 2.589879e+10 | 1.544462e+10 | 2.6800 | 2.022709e+09 |
18 | 2016-09-30 | 0.2600 | 9.3800 | 152.2100 | -8.0800 | 14.698833 | -1.135629e+09 | 1.232917e+09 | 5.1800 | 4.569420e+08 | -9.7900 | 2.380670e+10 | 1.549858e+10 | 3.4900 | 2.022709e+09 |
19 | 2016-12-31 | -1.2465 | -491.6800 | -53.3400 | 24.6300 | 15.888917 | 4.040904e+09 | -4.829140e+09 | -16.2800 | 2.131900e+08 | 10.7700 | 2.966918e+10 | 1.028224e+10 | -17.9600 | 2.022709e+09 |
20 | 2017-03-31 | 0.2899 | 127.2813 | 258.3930 | -13.2278 | 15.712500 | -9.711650e+08 | 1.317453e+09 | 5.1174 | 7.640580e+08 | 44.2163 | 2.574461e+10 | 1.149584e+10 | 4.4960 | 2.022709e+09 |
21 | 2017-06-30 | 0.2576 | -6.9596 | 231.4621 | 9.7938 | 19.197167 | -3.235387e+09 | 1.225763e+09 | 4.3365 | 2.532563e+09 | 75.0814 | 2.826598e+10 | 1.257511e+10 | 3.8153 | 2.022709e+09 |
22 | 2017-09-30 | 0.3800 | 42.8370 | -21.4213 | -20.1544 | 23.743083 | 1.036069e+09 | 1.750843e+09 | 7.7577 | 1.990054e+09 | -37.8305 | 2.256914e+10 | 1.418689e+10 | 5.3856 | 2.022709e+09 |
23 | 2017-12-31 | 0.1583 | -37.6139 | -26.3208 | 42.8301 | 34.003917 | 1.039046e+10 | 1.092283e+09 | 3.3884 | 1.466255e+09 | -0.6598 | 3.223553e+10 | 1.466768e+10 | 2.1228 | 2.205436e+09 |
24 | 2016-03-31 | 0.0732 | -73.1400 | -69.4400 | -62.8300 | 6.492583 | -1.397724e+09 | 6.400020e+08 | 11.6400 | 9.254854e+08 | 95.1500 | 5.500350e+09 | 2.238587e+10 | 1.5700 | 2.543815e+09 |
25 | 2016-06-30 | 0.1193 | 67.2200 | 48.5900 | 8.3500 | 6.177417 | 6.076731e+08 | 1.070220e+09 | 17.9600 | 1.375193e+09 | 77.3400 | 5.959879e+09 | 2.279104e+10 | 2.5500 | 2.543815e+09 |
26 | 2016-09-30 | 0.1630 | 33.5400 | 21.4400 | 27.3400 | 6.598250 | 1.097621e+10 | 1.429121e+09 | 18.8300 | 1.670046e+09 | 93.8000 | 7.589555e+09 | 2.412827e+10 | 3.4200 | 2.543815e+09 |
27 | 2016-12-31 | 0.4840 | 191.9000 | 175.4600 | 116.5000 | 6.704000 | -5.782313e+09 | 4.171598e+09 | 25.3900 | 4.600311e+09 | 80.8100 | 1.643132e+10 | 2.783806e+10 | 9.5200 | 2.805448e+09 |
28 | 2017-03-31 | 0.0923 | -80.5276 | -75.4480 | -62.5386 | 6.803750 | -7.510819e+09 | 8.123113e+08 | 13.1967 | 1.129467e+09 | 93.1227 | 6.155396e+09 | 2.859505e+10 | 1.7143 | 2.805448e+09 |
29 | 2017-06-30 | 0.1190 | 21.9382 | 29.5916 | 24.0133 | 8.113583 | -1.018259e+10 | 9.905180e+08 | 12.9759 | 1.463694e+09 | 96.4607 | 7.633513e+09 | 2.876039e+10 | 2.1770 | 2.805448e+09 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2250 | 2016-03-31 | -0.0652 | 82.9500 | 88.2200 | 26.2300 | 13.292000 | -9.905389e+07 | -3.735655e+07 | -3.5500 | -3.394274e+07 | 140.0600 | 1.052482e+09 | 5.027835e+08 | -1.4700 | 9.548766e+07 |
2251 | 2016-06-30 | 0.0068 | 102.3200 | 37.1100 | 5.7800 | 20.172750 | 2.154776e+08 | 8.653756e+05 | 0.0800 | -2.134785e+07 | 32.3600 | 1.113317e+09 | 5.064022e+08 | 0.1500 | 9.548766e+07 |
2252 | 2016-09-30 | 0.0800 | 4422.4400 | 333.8700 | 18.7900 | 25.900667 | 6.189952e+07 | 3.913605e+07 | 2.9600 | 4.992677e+07 | 57.8100 | 1.322482e+09 | 5.488654e+08 | 1.7500 | 9.548766e+07 |
2253 | 2016-12-31 | 0.0980 | 41.7100 | 62.7200 | 5.9500 | 23.780000 | 7.941974e+08 | 5.546059e+07 | 3.9600 | 8.124189e+07 | 138.1700 | 1.401104e+09 | 6.000031e+08 | 1.7100 | 1.024114e+08 |
2254 | 2017-03-31 | 0.4246 | 348.5904 | 316.1423 | 24.7000 | 32.809833 | -1.637676e+08 | 2.487909e+08 | 14.2396 | 3.380819e+08 | 100.0001 | 1.747176e+09 | 8.516644e+08 | 5.6251 | 1.024114e+08 |
2255 | 2017-06-30 | 0.7141 | 70.6137 | 48.3772 | 16.8343 | 34.699167 | -4.569780e+08 | 4.244713e+08 | 20.7942 | 5.016365e+08 | 97.5342 | 2.041301e+09 | 1.274913e+09 | 8.8329 | 1.024114e+08 |
2256 | 2017-09-30 | 0.7100 | -0.4746 | 0.6261 | 15.4893 | 52.392000 | -5.986665e+08 | 4.224566e+08 | 17.9198 | 5.047771e+08 | 104.4021 | 2.357484e+09 | 1.697863e+09 | 8.2345 | 1.024114e+08 |
2257 | 2017-12-31 | 1.3458 | 86.9817 | 79.7083 | 48.7714 | 60.570167 | -5.751204e+08 | 7.899165e+08 | 22.5223 | 9.071263e+08 | 100.5726 | 3.507261e+09 | 2.451631e+09 | 14.1027 | 1.462961e+08 |
2259 | 2017-06-30 | 0.8525 | 551.1253 | 425.4695 | 67.4591 | 107.537750 | 8.018877e+08 | 3.585043e+08 | 14.7772 | 3.648609e+08 | 88.9370 | 2.426069e+09 | 2.147579e+09 | 6.8019 | 1.243390e+08 |
2260 | 2017-09-30 | 1.2900 | 47.9250 | 77.3454 | 24.8382 | 102.349333 | 2.840959e+08 | 5.303175e+08 | 17.5100 | 6.470640e+08 | 97.7817 | 3.028661e+09 | 2.678022e+09 | 9.0454 | 1.243390e+08 |
2261 | 2017-12-31 | 0.8455 | -32.9753 | -33.2852 | -7.3288 | 115.926917 | 9.786372e+08 | 3.554438e+08 | 12.6641 | 4.316878e+08 | 84.6964 | 2.806695e+09 | 2.966904e+09 | 5.7561 | 1.910564e+08 |
2262 | 2016-12-31 | 0.7493 | -21.6300 | -20.4000 | -13.8400 | 78.570484 | 1.729370e+08 | 5.119535e+08 | 15.4300 | 5.810783e+08 | 81.1000 | 3.318619e+09 | 7.748695e+09 | 4.8600 | 3.314493e+08 |
2263 | 2017-03-31 | 0.3262 | -56.9138 | -54.7474 | -26.8197 | 64.234083 | 4.605382e+08 | 2.205816e+08 | 9.0828 | 2.629532e+08 | 92.6879 | 2.428574e+09 | 7.971078e+09 | 1.7487 | 3.314493e+08 |
2264 | 2017-06-30 | 0.6684 | 107.1505 | 116.9275 | 36.8238 | 55.238250 | 8.443235e+08 | 4.569359e+08 | 13.7513 | 5.704178e+08 | 95.5545 | 3.322868e+09 | 7.326335e+09 | 3.6437 | 3.314493e+08 |
2265 | 2017-09-30 | 0.6630 | -0.9928 | -5.6119 | 11.1736 | 50.384417 | 3.536411e+08 | 4.523996e+08 | 12.2464 | 5.384065e+08 | 99.5631 | 3.694151e+09 | 7.778353e+09 | 3.6427 | 3.314493e+08 |
2266 | 2017-12-31 | 0.7449 | 12.5159 | -28.2514 | 19.6033 | 45.485250 | 3.034728e+08 | 5.090213e+08 | 11.5207 | 3.862992e+08 | 60.2863 | 4.418326e+09 | 8.276772e+09 | 3.9406 | 3.409000e+08 |
2268 | 2016-09-30 | 0.6600 | -0.2500 | -2.5200 | 13.5200 | 43.327667 | 3.466695e+07 | 5.455966e+07 | 13.8700 | 4.610903e+07 | 76.7200 | 3.934187e+08 | 4.382496e+08 | 5.7600 | 2.848906e+07 |
2269 | 2016-12-31 | 0.3182 | -47.2700 | -35.0000 | 11.9500 | 63.220000 | 4.948543e+07 | 2.876988e+07 | 6.5300 | 2.997250e+07 | 86.4600 | 4.404252e+08 | 4.526373e+08 | 2.5300 | 4.591953e+07 |
2270 | 2017-03-31 | 0.6949 | 142.0712 | 151.4006 | 2.7122 | 66.899417 | -1.276328e+07 | 6.964360e+07 | 15.3953 | 7.535105e+07 | 95.2615 | 4.523703e+08 | 5.221263e+08 | 5.2954 | 4.591953e+07 |
2271 | 2017-06-30 | 0.5425 | 58.7974 | 65.6053 | 7.5063 | 64.560333 | 1.466835e+08 | 1.105922e+08 | 22.7403 | 1.247853e+08 | 87.6914 | 4.863266e+08 | 5.790817e+08 | 7.8822 | 4.591953e+07 |
2272 | 2017-09-30 | 0.8000 | 44.0255 | 45.6430 | 18.9271 | 64.561333 | 1.053011e+08 | 1.592810e+08 | 27.5394 | 1.817411e+08 | 75.2373 | 5.783742e+08 | 7.390937e+08 | 10.5010 | 4.591953e+07 |
2273 | 2017-12-31 | 0.2860 | -63.5692 | -69.9259 | -11.3657 | 109.730583 | -4.151713e+07 | 5.802732e+07 | 11.3194 | 5.465697e+07 | 86.3494 | 5.126378e+08 | 7.675425e+08 | 3.4499 | 7.543034e+07 |
2274 | 2016-03-31 | 0.0084 | 28.5500 | 29.3800 | 13.2200 | 3.478917 | 2.648065e+08 | 1.346673e+08 | 11.6400 | 2.324076e+08 | 85.6200 | 1.157333e+09 | 3.128069e+09 | 0.8100 | 7.860501e+08 |
2275 | 2016-06-30 | 0.0220 | 172.4500 | 63.2700 | -4.7400 | 3.649667 | 2.701510e+08 | 3.668949e+08 | 33.2800 | 3.794460e+08 | 66.4800 | 1.102519e+09 | 3.076703e+09 | 2.1300 | 7.860501e+08 |
2276 | 2016-09-30 | 0.0043 | -81.8300 | -65.1100 | 12.1200 | 3.999250 | 3.306001e+08 | 6.664981e+07 | 5.3900 | 1.323896e+08 | 67.1700 | 1.236185e+09 | 3.148299e+09 | 0.4100 | 7.860501e+08 |
2277 | 2016-12-31 | 0.0245 | 576.7100 | -94.7700 | 179.3700 | 3.865833 | 2.049269e+09 | 4.510263e+08 | 13.0600 | 6.925479e+06 | -1.2500 | 3.453534e+09 | 3.508789e+09 | 2.2700 | 8.400989e+08 |
2278 | 2017-03-31 | 0.0354 | 121.4284 | 21460.4199 | 67.4380 | 4.363417 | 1.427245e+09 | 9.987004e+08 | 17.2710 | 1.493162e+09 | 98.0996 | 5.782531e+09 | 4.106009e+09 | 3.1374 | 8.400989e+08 |
2279 | 2017-06-30 | 0.0141 | -62.8770 | -58.4281 | 1.5543 | 4.458667 | 2.054166e+09 | 3.707473e+08 | 6.3134 | 6.207354e+08 | 155.7238 | 5.872410e+09 | 3.752876e+09 | 1.2508 | 8.400989e+08 |
2280 | 2017-09-30 | 0.0400 | 145.8937 | 114.6130 | 3.0512 | 7.000000 | 2.185045e+09 | 9.116443e+08 | 15.0645 | 1.332179e+09 | 100.5395 | 6.051591e+09 | 4.522277e+09 | 2.7485 | 8.400989e+08 |
2281 | 2017-12-31 | 0.0520 | 44.1926 | 44.9506 | 6.4353 | 6.722417 | 2.762356e+09 | 1.314523e+09 | 20.4086 | 1.931002e+09 | 102.5679 | 6.441026e+09 | 5.517441e+09 | 2.9780 | 9.681907e+08 |
2256 rows × 15 columns
df.set_index('Unnamed: 0', inplace=True) # 再将 列column 改为 index
#df
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
eps | inc_net_profit_annual | inc_operation_profit_annual | inc_revenue_annual | mean_price | net_operate_cash_flow | net_profit | net_profit_margin | operating_profit | operating_profit_to_profit | operating_revenue | retained_profit | roe | surplus_reserve_fund | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unnamed: 0 | ||||||||||||||
2016-03-31 | 0.4253 | 47.5400 | 43.3600 | 10.0800 | 8.271833 | 5.926800e+10 | 6.086000e+09 | 22.1100 | 8.014000e+09 | 87.8300 | 2.753200e+10 | 5.901900e+10 | 3.4900 | 8.521000e+09 |
2016-06-30 | 0.3614 | 1.9700 | 1.6000 | -1.0700 | 8.370500 | -9.246600e+10 | 6.206000e+09 | 22.7900 | 8.142000e+09 | 86.8100 | 2.723700e+10 | 6.303600e+10 | 3.2700 | 8.521000e+09 |
2016-09-30 | 0.3700 | 3.5600 | 3.0300 | -0.1400 | 8.921500 | -1.197440e+11 | 6.427000e+09 | 23.6300 | 8.389000e+09 | 462.9000 | 2.719900e+10 | 6.946300e+10 | 3.3000 | 8.521000e+09 |
2016-12-31 | 0.2260 | -39.6300 | -37.6100 | -5.3400 | 8.975500 | 1.639310e+11 | 3.880000e+09 | 15.0700 | 5.234000e+09 | -493.6900 | 2.574700e+10 | 6.414300e+10 | 1.9400 | 1.078100e+10 |
2017-03-31 | 0.3619 | 60.1546 | 57.2029 | 7.6320 | 9.028333 | -1.150080e+11 | 6.214000e+09 | 22.4235 | 8.228000e+09 | 92.3086 | 2.771200e+10 | 6.948300e+10 | 3.0319 | 1.078100e+10 |
2017-06-30 | 0.3692 | 2.0277 | 0.1458 | -4.8751 | 8.753667 | -1.317200e+10 | 6.340000e+09 | 24.0507 | 8.240000e+09 | 97.5616 | 2.636100e+10 | 7.311000e+10 | 3.0249 | 1.078100e+10 |
2017-09-30 | 0.3800 | 4.0852 | 3.5437 | -2.2799 | 10.768917 | -2.980700e+10 | 6.599000e+09 | 25.6172 | 8.532000e+09 | 98.0487 | 2.576000e+10 | 7.970900e+10 | 3.0724 | 1.078100e+10 |
2017-12-31 | 0.2351 | -38.8392 | -38.7834 | 0.7492 | 12.431917 | 3.920700e+10 | 4.036000e+09 | 15.5512 | 5.223000e+09 | 102.8363 | 2.595300e+10 | 7.966100e+10 | 1.8339 | 1.078100e+10 |
2016-03-31 | 0.0755 | -92.3800 | -92.0700 | -87.4000 | 21.820000 | -1.072613e+10 | 1.249823e+09 | 8.5500 | 1.646601e+09 | 74.7700 | 1.461131e+10 | 5.343109e+10 | 0.8300 | 2.806877e+10 |
2016-06-30 | 0.4093 | 367.6500 | 401.5200 | 311.9000 | 21.820000 | 3.652334e+10 | 5.844807e+09 | 9.7100 | 8.258004e+09 | 88.0300 | 6.018398e+10 | 5.000097e+10 | 4.5600 | 2.806877e+10 |
2016-09-30 | 0.2600 | -28.2200 | -28.7600 | -29.7800 | 20.037500 | 1.718868e+10 | 4.195622e+09 | 9.9300 | 5.882695e+09 | 83.2500 | 4.225951e+10 | 5.291205e+10 | 2.9400 | 2.806877e+10 |
2016-12-31 | 1.1559 | 306.6100 | 295.0000 | 192.0600 | 23.069833 | -3.419766e+09 | 1.706000e+10 | 13.8200 | 2.323648e+10 | 87.8800 | 1.234224e+11 | 6.120027e+10 | 11.9300 | 3.254077e+10 |
2017-03-31 | 0.0630 | -93.4984 | -93.2907 | -84.9385 | 19.356917 | -9.523936e+09 | 1.109171e+09 | 5.9667 | 1.559008e+09 | 82.6764 | 1.858923e+10 | 6.189568e+10 | 0.6116 | 3.254077e+10 |
2017-06-30 | 0.5985 | 706.3518 | 676.3041 | 175.5426 | 19.283500 | 3.137410e+10 | 8.943819e+09 | 17.4611 | 1.210265e+10 | 88.4716 | 5.122125e+10 | 5.978206e+10 | 5.8314 | 3.254077e+10 |
2017-09-30 | 0.3430 | -46.7393 | -41.9464 | -7.6750 | 23.069000 | -5.143923e+09 | 4.763538e+09 | 10.0730 | 7.026021e+09 | 72.9184 | 4.729003e+10 | 6.357034e+10 | 3.3083 | 3.254077e+10 |
2017-12-31 | 1.5364 | 370.0679 | 328.7667 | 166.0109 | 27.828917 | 6.561660e+10 | 2.239186e+10 | 17.8001 | 3.012524e+10 | 90.1865 | 1.257966e+11 | 7.717185e+10 | 13.6205 | 3.590007e+10 |
2016-03-31 | 0.2286 | 25.6000 | 344.3000 | -30.9700 | 14.935583 | 3.945521e+09 | 1.061152e+09 | 4.8500 | 3.142410e+08 | 31.3500 | 2.185851e+10 | 1.462773e+10 | 3.1800 | 2.022709e+09 |
2016-06-30 | 0.1966 | 6.2200 | -42.3500 | 18.4800 | 13.704167 | -1.590590e+09 | 1.127202e+09 | 4.3500 | 1.811750e+08 | -19.1500 | 2.589879e+10 | 1.544462e+10 | 2.6800 | 2.022709e+09 |
2016-09-30 | 0.2600 | 9.3800 | 152.2100 | -8.0800 | 14.698833 | -1.135629e+09 | 1.232917e+09 | 5.1800 | 4.569420e+08 | -9.7900 | 2.380670e+10 | 1.549858e+10 | 3.4900 | 2.022709e+09 |
2016-12-31 | -1.2465 | -491.6800 | -53.3400 | 24.6300 | 15.888917 | 4.040904e+09 | -4.829140e+09 | -16.2800 | 2.131900e+08 | 10.7700 | 2.966918e+10 | 1.028224e+10 | -17.9600 | 2.022709e+09 |
2017-03-31 | 0.2899 | 127.2813 | 258.3930 | -13.2278 | 15.712500 | -9.711650e+08 | 1.317453e+09 | 5.1174 | 7.640580e+08 | 44.2163 | 2.574461e+10 | 1.149584e+10 | 4.4960 | 2.022709e+09 |
2017-06-30 | 0.2576 | -6.9596 | 231.4621 | 9.7938 | 19.197167 | -3.235387e+09 | 1.225763e+09 | 4.3365 | 2.532563e+09 | 75.0814 | 2.826598e+10 | 1.257511e+10 | 3.8153 | 2.022709e+09 |
2017-09-30 | 0.3800 | 42.8370 | -21.4213 | -20.1544 | 23.743083 | 1.036069e+09 | 1.750843e+09 | 7.7577 | 1.990054e+09 | -37.8305 | 2.256914e+10 | 1.418689e+10 | 5.3856 | 2.022709e+09 |
2017-12-31 | 0.1583 | -37.6139 | -26.3208 | 42.8301 | 34.003917 | 1.039046e+10 | 1.092283e+09 | 3.3884 | 1.466255e+09 | -0.6598 | 3.223553e+10 | 1.466768e+10 | 2.1228 | 2.205436e+09 |
2016-03-31 | 0.0732 | -73.1400 | -69.4400 | -62.8300 | 6.492583 | -1.397724e+09 | 6.400020e+08 | 11.6400 | 9.254854e+08 | 95.1500 | 5.500350e+09 | 2.238587e+10 | 1.5700 | 2.543815e+09 |
2016-06-30 | 0.1193 | 67.2200 | 48.5900 | 8.3500 | 6.177417 | 6.076731e+08 | 1.070220e+09 | 17.9600 | 1.375193e+09 | 77.3400 | 5.959879e+09 | 2.279104e+10 | 2.5500 | 2.543815e+09 |
2016-09-30 | 0.1630 | 33.5400 | 21.4400 | 27.3400 | 6.598250 | 1.097621e+10 | 1.429121e+09 | 18.8300 | 1.670046e+09 | 93.8000 | 7.589555e+09 | 2.412827e+10 | 3.4200 | 2.543815e+09 |
2016-12-31 | 0.4840 | 191.9000 | 175.4600 | 116.5000 | 6.704000 | -5.782313e+09 | 4.171598e+09 | 25.3900 | 4.600311e+09 | 80.8100 | 1.643132e+10 | 2.783806e+10 | 9.5200 | 2.805448e+09 |
2017-03-31 | 0.0923 | -80.5276 | -75.4480 | -62.5386 | 6.803750 | -7.510819e+09 | 8.123113e+08 | 13.1967 | 1.129467e+09 | 93.1227 | 6.155396e+09 | 2.859505e+10 | 1.7143 | 2.805448e+09 |
2017-06-30 | 0.1190 | 21.9382 | 29.5916 | 24.0133 | 8.113583 | -1.018259e+10 | 9.905180e+08 | 12.9759 | 1.463694e+09 | 96.4607 | 7.633513e+09 | 2.876039e+10 | 2.1770 | 2.805448e+09 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2016-03-31 | -0.0652 | 82.9500 | 88.2200 | 26.2300 | 13.292000 | -9.905389e+07 | -3.735655e+07 | -3.5500 | -3.394274e+07 | 140.0600 | 1.052482e+09 | 5.027835e+08 | -1.4700 | 9.548766e+07 |
2016-06-30 | 0.0068 | 102.3200 | 37.1100 | 5.7800 | 20.172750 | 2.154776e+08 | 8.653756e+05 | 0.0800 | -2.134785e+07 | 32.3600 | 1.113317e+09 | 5.064022e+08 | 0.1500 | 9.548766e+07 |
2016-09-30 | 0.0800 | 4422.4400 | 333.8700 | 18.7900 | 25.900667 | 6.189952e+07 | 3.913605e+07 | 2.9600 | 4.992677e+07 | 57.8100 | 1.322482e+09 | 5.488654e+08 | 1.7500 | 9.548766e+07 |
2016-12-31 | 0.0980 | 41.7100 | 62.7200 | 5.9500 | 23.780000 | 7.941974e+08 | 5.546059e+07 | 3.9600 | 8.124189e+07 | 138.1700 | 1.401104e+09 | 6.000031e+08 | 1.7100 | 1.024114e+08 |
2017-03-31 | 0.4246 | 348.5904 | 316.1423 | 24.7000 | 32.809833 | -1.637676e+08 | 2.487909e+08 | 14.2396 | 3.380819e+08 | 100.0001 | 1.747176e+09 | 8.516644e+08 | 5.6251 | 1.024114e+08 |
2017-06-30 | 0.7141 | 70.6137 | 48.3772 | 16.8343 | 34.699167 | -4.569780e+08 | 4.244713e+08 | 20.7942 | 5.016365e+08 | 97.5342 | 2.041301e+09 | 1.274913e+09 | 8.8329 | 1.024114e+08 |
2017-09-30 | 0.7100 | -0.4746 | 0.6261 | 15.4893 | 52.392000 | -5.986665e+08 | 4.224566e+08 | 17.9198 | 5.047771e+08 | 104.4021 | 2.357484e+09 | 1.697863e+09 | 8.2345 | 1.024114e+08 |
2017-12-31 | 1.3458 | 86.9817 | 79.7083 | 48.7714 | 60.570167 | -5.751204e+08 | 7.899165e+08 | 22.5223 | 9.071263e+08 | 100.5726 | 3.507261e+09 | 2.451631e+09 | 14.1027 | 1.462961e+08 |
2017-06-30 | 0.8525 | 551.1253 | 425.4695 | 67.4591 | 107.537750 | 8.018877e+08 | 3.585043e+08 | 14.7772 | 3.648609e+08 | 88.9370 | 2.426069e+09 | 2.147579e+09 | 6.8019 | 1.243390e+08 |
2017-09-30 | 1.2900 | 47.9250 | 77.3454 | 24.8382 | 102.349333 | 2.840959e+08 | 5.303175e+08 | 17.5100 | 6.470640e+08 | 97.7817 | 3.028661e+09 | 2.678022e+09 | 9.0454 | 1.243390e+08 |
2017-12-31 | 0.8455 | -32.9753 | -33.2852 | -7.3288 | 115.926917 | 9.786372e+08 | 3.554438e+08 | 12.6641 | 4.316878e+08 | 84.6964 | 2.806695e+09 | 2.966904e+09 | 5.7561 | 1.910564e+08 |
2016-12-31 | 0.7493 | -21.6300 | -20.4000 | -13.8400 | 78.570484 | 1.729370e+08 | 5.119535e+08 | 15.4300 | 5.810783e+08 | 81.1000 | 3.318619e+09 | 7.748695e+09 | 4.8600 | 3.314493e+08 |
2017-03-31 | 0.3262 | -56.9138 | -54.7474 | -26.8197 | 64.234083 | 4.605382e+08 | 2.205816e+08 | 9.0828 | 2.629532e+08 | 92.6879 | 2.428574e+09 | 7.971078e+09 | 1.7487 | 3.314493e+08 |
2017-06-30 | 0.6684 | 107.1505 | 116.9275 | 36.8238 | 55.238250 | 8.443235e+08 | 4.569359e+08 | 13.7513 | 5.704178e+08 | 95.5545 | 3.322868e+09 | 7.326335e+09 | 3.6437 | 3.314493e+08 |
2017-09-30 | 0.6630 | -0.9928 | -5.6119 | 11.1736 | 50.384417 | 3.536411e+08 | 4.523996e+08 | 12.2464 | 5.384065e+08 | 99.5631 | 3.694151e+09 | 7.778353e+09 | 3.6427 | 3.314493e+08 |
2017-12-31 | 0.7449 | 12.5159 | -28.2514 | 19.6033 | 45.485250 | 3.034728e+08 | 5.090213e+08 | 11.5207 | 3.862992e+08 | 60.2863 | 4.418326e+09 | 8.276772e+09 | 3.9406 | 3.409000e+08 |
2016-09-30 | 0.6600 | -0.2500 | -2.5200 | 13.5200 | 43.327667 | 3.466695e+07 | 5.455966e+07 | 13.8700 | 4.610903e+07 | 76.7200 | 3.934187e+08 | 4.382496e+08 | 5.7600 | 2.848906e+07 |
2016-12-31 | 0.3182 | -47.2700 | -35.0000 | 11.9500 | 63.220000 | 4.948543e+07 | 2.876988e+07 | 6.5300 | 2.997250e+07 | 86.4600 | 4.404252e+08 | 4.526373e+08 | 2.5300 | 4.591953e+07 |
2017-03-31 | 0.6949 | 142.0712 | 151.4006 | 2.7122 | 66.899417 | -1.276328e+07 | 6.964360e+07 | 15.3953 | 7.535105e+07 | 95.2615 | 4.523703e+08 | 5.221263e+08 | 5.2954 | 4.591953e+07 |
2017-06-30 | 0.5425 | 58.7974 | 65.6053 | 7.5063 | 64.560333 | 1.466835e+08 | 1.105922e+08 | 22.7403 | 1.247853e+08 | 87.6914 | 4.863266e+08 | 5.790817e+08 | 7.8822 | 4.591953e+07 |
2017-09-30 | 0.8000 | 44.0255 | 45.6430 | 18.9271 | 64.561333 | 1.053011e+08 | 1.592810e+08 | 27.5394 | 1.817411e+08 | 75.2373 | 5.783742e+08 | 7.390937e+08 | 10.5010 | 4.591953e+07 |
2017-12-31 | 0.2860 | -63.5692 | -69.9259 | -11.3657 | 109.730583 | -4.151713e+07 | 5.802732e+07 | 11.3194 | 5.465697e+07 | 86.3494 | 5.126378e+08 | 7.675425e+08 | 3.4499 | 7.543034e+07 |
2016-03-31 | 0.0084 | 28.5500 | 29.3800 | 13.2200 | 3.478917 | 2.648065e+08 | 1.346673e+08 | 11.6400 | 2.324076e+08 | 85.6200 | 1.157333e+09 | 3.128069e+09 | 0.8100 | 7.860501e+08 |
2016-06-30 | 0.0220 | 172.4500 | 63.2700 | -4.7400 | 3.649667 | 2.701510e+08 | 3.668949e+08 | 33.2800 | 3.794460e+08 | 66.4800 | 1.102519e+09 | 3.076703e+09 | 2.1300 | 7.860501e+08 |
2016-09-30 | 0.0043 | -81.8300 | -65.1100 | 12.1200 | 3.999250 | 3.306001e+08 | 6.664981e+07 | 5.3900 | 1.323896e+08 | 67.1700 | 1.236185e+09 | 3.148299e+09 | 0.4100 | 7.860501e+08 |
2016-12-31 | 0.0245 | 576.7100 | -94.7700 | 179.3700 | 3.865833 | 2.049269e+09 | 4.510263e+08 | 13.0600 | 6.925479e+06 | -1.2500 | 3.453534e+09 | 3.508789e+09 | 2.2700 | 8.400989e+08 |
2017-03-31 | 0.0354 | 121.4284 | 21460.4199 | 67.4380 | 4.363417 | 1.427245e+09 | 9.987004e+08 | 17.2710 | 1.493162e+09 | 98.0996 | 5.782531e+09 | 4.106009e+09 | 3.1374 | 8.400989e+08 |
2017-06-30 | 0.0141 | -62.8770 | -58.4281 | 1.5543 | 4.458667 | 2.054166e+09 | 3.707473e+08 | 6.3134 | 6.207354e+08 | 155.7238 | 5.872410e+09 | 3.752876e+09 | 1.2508 | 8.400989e+08 |
2017-09-30 | 0.0400 | 145.8937 | 114.6130 | 3.0512 | 7.000000 | 2.185045e+09 | 9.116443e+08 | 15.0645 | 1.332179e+09 | 100.5395 | 6.051591e+09 | 4.522277e+09 | 2.7485 | 8.400989e+08 |
2017-12-31 | 0.0520 | 44.1926 | 44.9506 | 6.4353 | 6.722417 | 2.762356e+09 | 1.314523e+09 | 20.4086 | 1.931002e+09 | 102.5679 | 6.441026e+09 | 5.517441e+09 | 2.9780 | 9.681907e+08 |
2256 rows × 14 columns
#数据去极值及标准化 去均值 不用写常数项
def winsorize_and_standarlize(data,qrange=[0.01,0.98],axis=0):
'''
input:
data:Dataframe or series,输入数据
qrange:list,list[0]下分位数,list[1],上分位数,极值用分位数代替
'''
if isinstance(data,pd.DataFrame):
if axis == 0:
q_down = data.quantile(qrange[0])
q_up = data.quantile(qrange[1])
index = data.index
col = data.columns
print('q_up上分位数',q_up)
print('data.mean均值',data.mean(),'ok均值')
print('price.mean()',data['mean_price'].mean())
for n in col:
#去掉极端值
data[n][data[n] > q_up[n]] = q_up[n]
data[n][data[n] < q_down[n]] = q_down[n]
'''
#标准化 未用
data[n] = (data[n] - data[n].mean())/data[n].std()
print(n,'data[n].mean()的值为',data[n].mean())
#data[n] = data[n].fillna(0)
'''
else:
data = data.stack()
data = data.unstack(0)
q = data.quantile(qrange)
index = data.index
col = data.columns
for n in col:
data[n][data[n] > q[n]] = q[n]
data = (data - data.mean())/data.std()
data = data.stack().unstack(0)
data = data.fillna(0)
elif isinstance(data,pd.Series):
name = data.name
q = data.quantile(qrange)
data[data>q] = q
data = (data - data.mean())/data.std()
return data
data_pro = winsorize_and_standarlize(df)
data_pro
q_up上分位数 eps 9.745900e-01 inc_net_profit_annual 8.806128e+02 inc_operation_profit_annual 8.235947e+02 inc_revenue_annual 1.868470e+02 mean_price 6.516511e+01 net_operate_cash_flow 8.268597e+10 net_profit 1.935970e+10 net_profit_margin 6.222397e+01 operating_profit 2.433390e+10 operating_profit_to_profit 1.604999e+02 operating_revenue 1.773546e+11 retained_profit 2.578779e+11 roe 1.255319e+01 surplus_reserve_fund 1.246179e+11 Name: 0.98, dtype: float64 data.mean均值 eps 2.329984e-01 inc_net_profit_annual 3.470843e+02 inc_operation_profit_annual 1.681235e+02 inc_revenue_annual 4.591364e+01 mean_price 1.848996e+01 net_operate_cash_flow 3.960397e+09 net_profit 2.305853e+09 net_profit_margin 1.932793e+01 operating_profit 2.851361e+09 operating_profit_to_profit 5.386575e+01 operating_revenue 2.064629e+10 retained_profit 3.035775e+10 roe 3.589128e+00 surplus_reserve_fund 7.106409e+09 dtype: float64 ok均值 price.mean() 18.489957369723257
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
eps | inc_net_profit_annual | inc_operation_profit_annual | inc_revenue_annual | mean_price | net_operate_cash_flow | net_profit | net_profit_margin | operating_profit | operating_profit_to_profit | operating_revenue | retained_profit | roe | surplus_reserve_fund | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unnamed: 0 | ||||||||||||||
2016-03-31 | 0.425300 | 47.540000 | 43.36000 | 10.08000 | 8.271833 | 5.926800e+10 | 6.086000e+09 | 22.1100 | 8.014000e+09 | 87.83000 | 2.753200e+10 | 5.901900e+10 | 3.49000 | 8.521000e+09 |
2016-06-30 | 0.361400 | 1.970000 | 1.60000 | -1.07000 | 8.370500 | -7.926415e+10 | 6.206000e+09 | 22.7900 | 8.142000e+09 | 86.81000 | 2.723700e+10 | 6.303600e+10 | 3.27000 | 8.521000e+09 |
2016-09-30 | 0.370000 | 3.560000 | 3.03000 | -0.14000 | 8.921500 | -7.926415e+10 | 6.427000e+09 | 23.6300 | 8.389000e+09 | 160.49987 | 2.719900e+10 | 6.946300e+10 | 3.30000 | 8.521000e+09 |
2016-12-31 | 0.226000 | -39.630000 | -37.61000 | -5.34000 | 8.975500 | 8.268597e+10 | 3.880000e+09 | 15.0700 | 5.234000e+09 | -380.68499 | 2.574700e+10 | 6.414300e+10 | 1.94000 | 1.078100e+10 |
2017-03-31 | 0.361900 | 60.154600 | 57.20290 | 7.63200 | 9.028333 | -7.926415e+10 | 6.214000e+09 | 22.4235 | 8.228000e+09 | 92.30860 | 2.771200e+10 | 6.948300e+10 | 3.03190 | 1.078100e+10 |
2017-06-30 | 0.369200 | 2.027700 | 0.14580 | -4.87510 | 8.753667 | -1.317200e+10 | 6.340000e+09 | 24.0507 | 8.240000e+09 | 97.56160 | 2.636100e+10 | 7.311000e+10 | 3.02490 | 1.078100e+10 |
2017-09-30 | 0.380000 | 4.085200 | 3.54370 | -2.27990 | 10.768917 | -2.980700e+10 | 6.599000e+09 | 25.6172 | 8.532000e+09 | 98.04870 | 2.576000e+10 | 7.970900e+10 | 3.07240 | 1.078100e+10 |
2017-12-31 | 0.235100 | -38.839200 | -38.78340 | 0.74920 | 12.431917 | 3.920700e+10 | 4.036000e+09 | 15.5512 | 5.223000e+09 | 102.83630 | 2.595300e+10 | 7.966100e+10 | 1.83390 | 1.078100e+10 |
2016-03-31 | 0.075500 | -92.380000 | -92.07000 | -72.64127 | 21.820000 | -1.072613e+10 | 1.249823e+09 | 8.5500 | 1.646601e+09 | 74.77000 | 1.461131e+10 | 5.343109e+10 | 0.83000 | 2.806877e+10 |
2016-06-30 | 0.409300 | 367.650000 | 401.52000 | 186.84700 | 21.820000 | 3.652334e+10 | 5.844807e+09 | 9.7100 | 8.258004e+09 | 88.03000 | 6.018398e+10 | 5.000097e+10 | 4.56000 | 2.806877e+10 |
2016-09-30 | 0.260000 | -28.220000 | -28.76000 | -29.78000 | 20.037500 | 1.718868e+10 | 4.195622e+09 | 9.9300 | 5.882695e+09 | 83.25000 | 4.225951e+10 | 5.291205e+10 | 2.94000 | 2.806877e+10 |
2016-12-31 | 0.974590 | 306.610000 | 295.00000 | 186.84700 | 23.069833 | -3.419766e+09 | 1.706000e+10 | 13.8200 | 2.323648e+10 | 87.88000 | 1.234224e+11 | 6.120027e+10 | 11.93000 | 3.254077e+10 |
2017-03-31 | 0.063000 | -93.498400 | -93.29070 | -72.64127 | 19.356917 | -9.523936e+09 | 1.109171e+09 | 5.9667 | 1.559008e+09 | 82.67640 | 1.858923e+10 | 6.189568e+10 | 0.61160 | 3.254077e+10 |
2017-06-30 | 0.598500 | 706.351800 | 676.30410 | 175.54260 | 19.283500 | 3.137410e+10 | 8.943819e+09 | 17.4611 | 1.210265e+10 | 88.47160 | 5.122125e+10 | 5.978206e+10 | 5.83140 | 3.254077e+10 |
2017-09-30 | 0.343000 | -46.739300 | -41.94640 | -7.67500 | 23.069000 | -5.143923e+09 | 4.763538e+09 | 10.0730 | 7.026021e+09 | 72.91840 | 4.729003e+10 | 6.357034e+10 | 3.30830 | 3.254077e+10 |
2017-12-31 | 0.974590 | 370.067900 | 328.76670 | 166.01090 | 27.828917 | 6.561660e+10 | 1.935970e+10 | 17.8001 | 2.433390e+10 | 90.18650 | 1.257966e+11 | 7.717185e+10 | 12.55319 | 3.590007e+10 |
2016-03-31 | 0.228600 | 25.600000 | 344.30000 | -30.97000 | 14.935583 | 3.945521e+09 | 1.061152e+09 | 4.8500 | 3.142410e+08 | 31.35000 | 2.185851e+10 | 1.462773e+10 | 3.18000 | 2.022709e+09 |
2016-06-30 | 0.196600 | 6.220000 | -42.35000 | 18.48000 | 13.704167 | -1.590590e+09 | 1.127202e+09 | 4.3500 | 1.811750e+08 | -19.15000 | 2.589879e+10 | 1.544462e+10 | 2.68000 | 2.022709e+09 |
2016-09-30 | 0.260000 | 9.380000 | 152.21000 | -8.08000 | 14.698833 | -1.135629e+09 | 1.232917e+09 | 5.1800 | 4.569420e+08 | -9.79000 | 2.380670e+10 | 1.549858e+10 | 3.49000 | 2.022709e+09 |
2016-12-31 | -0.129495 | -221.470985 | -53.34000 | 24.63000 | 15.888917 | 4.040904e+09 | -6.429817e+08 | -16.2800 | 2.131900e+08 | 10.77000 | 2.966918e+10 | 1.028224e+10 | -3.64750 | 2.022709e+09 |
2017-03-31 | 0.289900 | 127.281300 | 258.39300 | -13.22780 | 15.712500 | -9.711650e+08 | 1.317453e+09 | 5.1174 | 7.640580e+08 | 44.21630 | 2.574461e+10 | 1.149584e+10 | 4.49600 | 2.022709e+09 |
2017-06-30 | 0.257600 | -6.959600 | 231.46210 | 9.79380 | 19.197167 | -3.235387e+09 | 1.225763e+09 | 4.3365 | 2.532563e+09 | 75.08140 | 2.826598e+10 | 1.257511e+10 | 3.81530 | 2.022709e+09 |
2017-09-30 | 0.380000 | 42.837000 | -21.42130 | -20.15440 | 23.743083 | 1.036069e+09 | 1.750843e+09 | 7.7577 | 1.990054e+09 | -37.83050 | 2.256914e+10 | 1.418689e+10 | 5.38560 | 2.022709e+09 |
2017-12-31 | 0.158300 | -37.613900 | -26.32080 | 42.83010 | 34.003917 | 1.039046e+10 | 1.092283e+09 | 3.3884 | 1.466255e+09 | -0.65980 | 3.223553e+10 | 1.466768e+10 | 2.12280 | 2.205436e+09 |
2016-03-31 | 0.073200 | -73.140000 | -69.44000 | -62.83000 | 6.492583 | -1.397724e+09 | 6.400020e+08 | 11.6400 | 9.254854e+08 | 95.15000 | 5.500350e+09 | 2.238587e+10 | 1.57000 | 2.543815e+09 |
2016-06-30 | 0.119300 | 67.220000 | 48.59000 | 8.35000 | 6.177417 | 6.076731e+08 | 1.070220e+09 | 17.9600 | 1.375193e+09 | 77.34000 | 5.959879e+09 | 2.279104e+10 | 2.55000 | 2.543815e+09 |
2016-09-30 | 0.163000 | 33.540000 | 21.44000 | 27.34000 | 6.598250 | 1.097621e+10 | 1.429121e+09 | 18.8300 | 1.670046e+09 | 93.80000 | 7.589555e+09 | 2.412827e+10 | 3.42000 | 2.543815e+09 |
2016-12-31 | 0.484000 | 191.900000 | 175.46000 | 116.50000 | 6.704000 | -5.782313e+09 | 4.171598e+09 | 25.3900 | 4.600311e+09 | 80.81000 | 1.643132e+10 | 2.783806e+10 | 9.52000 | 2.805448e+09 |
2017-03-31 | 0.092300 | -80.527600 | -75.44800 | -62.53860 | 6.803750 | -7.510819e+09 | 8.123113e+08 | 13.1967 | 1.129467e+09 | 93.12270 | 6.155396e+09 | 2.859505e+10 | 1.71430 | 2.805448e+09 |
2017-06-30 | 0.119000 | 21.938200 | 29.59160 | 24.01330 | 8.113583 | -1.018259e+10 | 9.905180e+08 | 12.9759 | 1.463694e+09 | 96.46070 | 7.633513e+09 | 2.876039e+10 | 2.17700 | 2.805448e+09 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2016-03-31 | -0.065200 | 82.950000 | 88.22000 | 26.23000 | 13.292000 | -9.905389e+07 | -3.735655e+07 | -3.5500 | -3.394274e+07 | 140.06000 | 1.052482e+09 | 5.027835e+08 | -1.47000 | 9.548766e+07 |
2016-06-30 | 0.006800 | 102.320000 | 37.11000 | 5.78000 | 20.172750 | 2.154776e+08 | 8.653756e+05 | 0.0800 | -2.134785e+07 | 32.36000 | 1.113317e+09 | 5.064022e+08 | 0.15000 | 9.548766e+07 |
2016-09-30 | 0.080000 | 880.612820 | 333.87000 | 18.79000 | 25.900667 | 6.189952e+07 | 3.913605e+07 | 2.9600 | 4.992677e+07 | 57.81000 | 1.322482e+09 | 5.488654e+08 | 1.75000 | 9.548766e+07 |
2016-12-31 | 0.098000 | 41.710000 | 62.72000 | 5.95000 | 23.780000 | 7.941974e+08 | 5.546059e+07 | 3.9600 | 8.124189e+07 | 138.17000 | 1.401104e+09 | 6.000031e+08 | 1.71000 | 1.024114e+08 |
2017-03-31 | 0.424600 | 348.590400 | 316.14230 | 24.70000 | 32.809833 | -1.637676e+08 | 2.487909e+08 | 14.2396 | 3.380819e+08 | 100.00010 | 1.747176e+09 | 8.516644e+08 | 5.62510 | 1.024114e+08 |
2017-06-30 | 0.714100 | 70.613700 | 48.37720 | 16.83430 | 34.699167 | -4.569780e+08 | 4.244713e+08 | 20.7942 | 5.016365e+08 | 97.53420 | 2.041301e+09 | 1.274913e+09 | 8.83290 | 1.024114e+08 |
2017-09-30 | 0.710000 | -0.474600 | 0.62610 | 15.48930 | 52.392000 | -5.986665e+08 | 4.224566e+08 | 17.9198 | 5.047771e+08 | 104.40210 | 2.357484e+09 | 1.697863e+09 | 8.23450 | 1.024114e+08 |
2017-12-31 | 0.974590 | 86.981700 | 79.70830 | 48.77140 | 60.570167 | -5.751204e+08 | 7.899165e+08 | 22.5223 | 9.071263e+08 | 100.57260 | 3.507261e+09 | 2.451631e+09 | 12.55319 | 1.462961e+08 |
2017-06-30 | 0.852500 | 551.125300 | 425.46950 | 67.45910 | 65.165108 | 8.018877e+08 | 3.585043e+08 | 14.7772 | 3.648609e+08 | 88.93700 | 2.426069e+09 | 2.147579e+09 | 6.80190 | 1.243390e+08 |
2017-09-30 | 0.974590 | 47.925000 | 77.34540 | 24.83820 | 65.165108 | 2.840959e+08 | 5.303175e+08 | 17.5100 | 6.470640e+08 | 97.78170 | 3.028661e+09 | 2.678022e+09 | 9.04540 | 1.243390e+08 |
2017-12-31 | 0.845500 | -32.975300 | -33.28520 | -7.32880 | 65.165108 | 9.786372e+08 | 3.554438e+08 | 12.6641 | 4.316878e+08 | 84.69640 | 2.806695e+09 | 2.966904e+09 | 5.75610 | 1.910564e+08 |
2016-12-31 | 0.749300 | -21.630000 | -20.40000 | -13.84000 | 65.165108 | 1.729370e+08 | 5.119535e+08 | 15.4300 | 5.810783e+08 | 81.10000 | 3.318619e+09 | 7.748695e+09 | 4.86000 | 3.314493e+08 |
2017-03-31 | 0.326200 | -56.913800 | -54.74740 | -26.81970 | 64.234083 | 4.605382e+08 | 2.205816e+08 | 9.0828 | 2.629532e+08 | 92.68790 | 2.428574e+09 | 7.971078e+09 | 1.74870 | 3.314493e+08 |
2017-06-30 | 0.668400 | 107.150500 | 116.92750 | 36.82380 | 55.238250 | 8.443235e+08 | 4.569359e+08 | 13.7513 | 5.704178e+08 | 95.55450 | 3.322868e+09 | 7.326335e+09 | 3.64370 | 3.314493e+08 |
2017-09-30 | 0.663000 | -0.992800 | -5.61190 | 11.17360 | 50.384417 | 3.536411e+08 | 4.523996e+08 | 12.2464 | 5.384065e+08 | 99.56310 | 3.694151e+09 | 7.778353e+09 | 3.64270 | 3.314493e+08 |
2017-12-31 | 0.744900 | 12.515900 | -28.25140 | 19.60330 | 45.485250 | 3.034728e+08 | 5.090213e+08 | 11.5207 | 3.862992e+08 | 60.28630 | 4.418326e+09 | 8.276772e+09 | 3.94060 | 3.409000e+08 |
2016-09-30 | 0.660000 | -0.250000 | -2.52000 | 13.52000 | 43.327667 | 3.466695e+07 | 5.455966e+07 | 13.8700 | 4.610903e+07 | 76.72000 | 3.934187e+08 | 4.382496e+08 | 5.76000 | 2.848906e+07 |
2016-12-31 | 0.318200 | -47.270000 | -35.00000 | 11.95000 | 63.220000 | 4.948543e+07 | 2.876988e+07 | 6.5300 | 2.997250e+07 | 86.46000 | 4.404252e+08 | 4.526373e+08 | 2.53000 | 4.591953e+07 |
2017-03-31 | 0.694900 | 142.071200 | 151.40060 | 2.71220 | 65.165108 | -1.276328e+07 | 6.964360e+07 | 15.3953 | 7.535105e+07 | 95.26150 | 4.523703e+08 | 5.221263e+08 | 5.29540 | 4.591953e+07 |
2017-06-30 | 0.542500 | 58.797400 | 65.60530 | 7.50630 | 64.560333 | 1.466835e+08 | 1.105922e+08 | 22.7403 | 1.247853e+08 | 87.69140 | 4.863266e+08 | 5.790817e+08 | 7.88220 | 4.591953e+07 |
2017-09-30 | 0.800000 | 44.025500 | 45.64300 | 18.92710 | 64.561333 | 1.053011e+08 | 1.592810e+08 | 27.5394 | 1.817411e+08 | 75.23730 | 5.783742e+08 | 7.390937e+08 | 10.50100 | 4.591953e+07 |
2017-12-31 | 0.286000 | -63.569200 | -69.92590 | -11.36570 | 65.165108 | -4.151713e+07 | 5.802732e+07 | 11.3194 | 5.465697e+07 | 86.34940 | 5.126378e+08 | 7.675425e+08 | 3.44990 | 7.543034e+07 |
2016-03-31 | 0.008400 | 28.550000 | 29.38000 | 13.22000 | 3.478917 | 2.648065e+08 | 1.346673e+08 | 11.6400 | 2.324076e+08 | 85.62000 | 1.157333e+09 | 3.128069e+09 | 0.81000 | 7.860501e+08 |
2016-06-30 | 0.022000 | 172.450000 | 63.27000 | -4.74000 | 3.649667 | 2.701510e+08 | 3.668949e+08 | 33.2800 | 3.794460e+08 | 66.48000 | 1.102519e+09 | 3.076703e+09 | 2.13000 | 7.860501e+08 |
2016-09-30 | 0.004300 | -81.830000 | -65.11000 | 12.12000 | 3.999250 | 3.306001e+08 | 6.664981e+07 | 5.3900 | 1.323896e+08 | 67.17000 | 1.236185e+09 | 3.148299e+09 | 0.41000 | 7.860501e+08 |
2016-12-31 | 0.024500 | 576.710000 | -94.77000 | 179.37000 | 3.865833 | 2.049269e+09 | 4.510263e+08 | 13.0600 | 6.925479e+06 | -1.25000 | 3.453534e+09 | 3.508789e+09 | 2.27000 | 8.400989e+08 |
2017-03-31 | 0.035400 | 121.428400 | 823.59474 | 67.43800 | 4.363417 | 1.427245e+09 | 9.987004e+08 | 17.2710 | 1.493162e+09 | 98.09960 | 5.782531e+09 | 4.106009e+09 | 3.13740 | 8.400989e+08 |
2017-06-30 | 0.014100 | -62.877000 | -58.42810 | 1.55430 | 4.458667 | 2.054166e+09 | 3.707473e+08 | 6.3134 | 6.207354e+08 | 155.72380 | 5.872410e+09 | 3.752876e+09 | 1.25080 | 8.400989e+08 |
2017-09-30 | 0.040000 | 145.893700 | 114.61300 | 3.05120 | 7.000000 | 2.185045e+09 | 9.116443e+08 | 15.0645 | 1.332179e+09 | 100.53950 | 6.051591e+09 | 4.522277e+09 | 2.74850 | 8.400989e+08 |
2017-12-31 | 0.052000 | 44.192600 | 44.95060 | 6.43530 | 6.722417 | 2.762356e+09 | 1.314523e+09 | 20.4086 | 1.931002e+09 | 102.56790 | 6.441026e+09 | 5.517441e+09 | 2.97800 | 9.681907e+08 |
2256 rows × 14 columns
price = data_pro['mean_price']
data_pro.drop(labels=['mean_price'], axis=1,inplace = True)
#df.insert(0, 'close', close)
data_pro.insert( 0, 'price', price)
#close
data_pro
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
price | eps | inc_net_profit_annual | inc_operation_profit_annual | inc_revenue_annual | net_operate_cash_flow | net_profit | net_profit_margin | operating_profit | operating_profit_to_profit | operating_revenue | retained_profit | roe | surplus_reserve_fund | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unnamed: 0 | ||||||||||||||
2016-03-31 | 8.271833 | 0.425300 | 47.540000 | 43.36000 | 10.08000 | 5.926800e+10 | 6.086000e+09 | 22.1100 | 8.014000e+09 | 87.83000 | 2.753200e+10 | 5.901900e+10 | 3.49000 | 8.521000e+09 |
2016-06-30 | 8.370500 | 0.361400 | 1.970000 | 1.60000 | -1.07000 | -7.926415e+10 | 6.206000e+09 | 22.7900 | 8.142000e+09 | 86.81000 | 2.723700e+10 | 6.303600e+10 | 3.27000 | 8.521000e+09 |
2016-09-30 | 8.921500 | 0.370000 | 3.560000 | 3.03000 | -0.14000 | -7.926415e+10 | 6.427000e+09 | 23.6300 | 8.389000e+09 | 160.49987 | 2.719900e+10 | 6.946300e+10 | 3.30000 | 8.521000e+09 |
2016-12-31 | 8.975500 | 0.226000 | -39.630000 | -37.61000 | -5.34000 | 8.268597e+10 | 3.880000e+09 | 15.0700 | 5.234000e+09 | -380.68499 | 2.574700e+10 | 6.414300e+10 | 1.94000 | 1.078100e+10 |
2017-03-31 | 9.028333 | 0.361900 | 60.154600 | 57.20290 | 7.63200 | -7.926415e+10 | 6.214000e+09 | 22.4235 | 8.228000e+09 | 92.30860 | 2.771200e+10 | 6.948300e+10 | 3.03190 | 1.078100e+10 |
2017-06-30 | 8.753667 | 0.369200 | 2.027700 | 0.14580 | -4.87510 | -1.317200e+10 | 6.340000e+09 | 24.0507 | 8.240000e+09 | 97.56160 | 2.636100e+10 | 7.311000e+10 | 3.02490 | 1.078100e+10 |
2017-09-30 | 10.768917 | 0.380000 | 4.085200 | 3.54370 | -2.27990 | -2.980700e+10 | 6.599000e+09 | 25.6172 | 8.532000e+09 | 98.04870 | 2.576000e+10 | 7.970900e+10 | 3.07240 | 1.078100e+10 |
2017-12-31 | 12.431917 | 0.235100 | -38.839200 | -38.78340 | 0.74920 | 3.920700e+10 | 4.036000e+09 | 15.5512 | 5.223000e+09 | 102.83630 | 2.595300e+10 | 7.966100e+10 | 1.83390 | 1.078100e+10 |
2016-03-31 | 21.820000 | 0.075500 | -92.380000 | -92.07000 | -72.64127 | -1.072613e+10 | 1.249823e+09 | 8.5500 | 1.646601e+09 | 74.77000 | 1.461131e+10 | 5.343109e+10 | 0.83000 | 2.806877e+10 |
2016-06-30 | 21.820000 | 0.409300 | 367.650000 | 401.52000 | 186.84700 | 3.652334e+10 | 5.844807e+09 | 9.7100 | 8.258004e+09 | 88.03000 | 6.018398e+10 | 5.000097e+10 | 4.56000 | 2.806877e+10 |
2016-09-30 | 20.037500 | 0.260000 | -28.220000 | -28.76000 | -29.78000 | 1.718868e+10 | 4.195622e+09 | 9.9300 | 5.882695e+09 | 83.25000 | 4.225951e+10 | 5.291205e+10 | 2.94000 | 2.806877e+10 |
2016-12-31 | 23.069833 | 0.974590 | 306.610000 | 295.00000 | 186.84700 | -3.419766e+09 | 1.706000e+10 | 13.8200 | 2.323648e+10 | 87.88000 | 1.234224e+11 | 6.120027e+10 | 11.93000 | 3.254077e+10 |
2017-03-31 | 19.356917 | 0.063000 | -93.498400 | -93.29070 | -72.64127 | -9.523936e+09 | 1.109171e+09 | 5.9667 | 1.559008e+09 | 82.67640 | 1.858923e+10 | 6.189568e+10 | 0.61160 | 3.254077e+10 |
2017-06-30 | 19.283500 | 0.598500 | 706.351800 | 676.30410 | 175.54260 | 3.137410e+10 | 8.943819e+09 | 17.4611 | 1.210265e+10 | 88.47160 | 5.122125e+10 | 5.978206e+10 | 5.83140 | 3.254077e+10 |
2017-09-30 | 23.069000 | 0.343000 | -46.739300 | -41.94640 | -7.67500 | -5.143923e+09 | 4.763538e+09 | 10.0730 | 7.026021e+09 | 72.91840 | 4.729003e+10 | 6.357034e+10 | 3.30830 | 3.254077e+10 |
2017-12-31 | 27.828917 | 0.974590 | 370.067900 | 328.76670 | 166.01090 | 6.561660e+10 | 1.935970e+10 | 17.8001 | 2.433390e+10 | 90.18650 | 1.257966e+11 | 7.717185e+10 | 12.55319 | 3.590007e+10 |
2016-03-31 | 14.935583 | 0.228600 | 25.600000 | 344.30000 | -30.97000 | 3.945521e+09 | 1.061152e+09 | 4.8500 | 3.142410e+08 | 31.35000 | 2.185851e+10 | 1.462773e+10 | 3.18000 | 2.022709e+09 |
2016-06-30 | 13.704167 | 0.196600 | 6.220000 | -42.35000 | 18.48000 | -1.590590e+09 | 1.127202e+09 | 4.3500 | 1.811750e+08 | -19.15000 | 2.589879e+10 | 1.544462e+10 | 2.68000 | 2.022709e+09 |
2016-09-30 | 14.698833 | 0.260000 | 9.380000 | 152.21000 | -8.08000 | -1.135629e+09 | 1.232917e+09 | 5.1800 | 4.569420e+08 | -9.79000 | 2.380670e+10 | 1.549858e+10 | 3.49000 | 2.022709e+09 |
2016-12-31 | 15.888917 | -0.129495 | -221.470985 | -53.34000 | 24.63000 | 4.040904e+09 | -6.429817e+08 | -16.2800 | 2.131900e+08 | 10.77000 | 2.966918e+10 | 1.028224e+10 | -3.64750 | 2.022709e+09 |
2017-03-31 | 15.712500 | 0.289900 | 127.281300 | 258.39300 | -13.22780 | -9.711650e+08 | 1.317453e+09 | 5.1174 | 7.640580e+08 | 44.21630 | 2.574461e+10 | 1.149584e+10 | 4.49600 | 2.022709e+09 |
2017-06-30 | 19.197167 | 0.257600 | -6.959600 | 231.46210 | 9.79380 | -3.235387e+09 | 1.225763e+09 | 4.3365 | 2.532563e+09 | 75.08140 | 2.826598e+10 | 1.257511e+10 | 3.81530 | 2.022709e+09 |
2017-09-30 | 23.743083 | 0.380000 | 42.837000 | -21.42130 | -20.15440 | 1.036069e+09 | 1.750843e+09 | 7.7577 | 1.990054e+09 | -37.83050 | 2.256914e+10 | 1.418689e+10 | 5.38560 | 2.022709e+09 |
2017-12-31 | 34.003917 | 0.158300 | -37.613900 | -26.32080 | 42.83010 | 1.039046e+10 | 1.092283e+09 | 3.3884 | 1.466255e+09 | -0.65980 | 3.223553e+10 | 1.466768e+10 | 2.12280 | 2.205436e+09 |
2016-03-31 | 6.492583 | 0.073200 | -73.140000 | -69.44000 | -62.83000 | -1.397724e+09 | 6.400020e+08 | 11.6400 | 9.254854e+08 | 95.15000 | 5.500350e+09 | 2.238587e+10 | 1.57000 | 2.543815e+09 |
2016-06-30 | 6.177417 | 0.119300 | 67.220000 | 48.59000 | 8.35000 | 6.076731e+08 | 1.070220e+09 | 17.9600 | 1.375193e+09 | 77.34000 | 5.959879e+09 | 2.279104e+10 | 2.55000 | 2.543815e+09 |
2016-09-30 | 6.598250 | 0.163000 | 33.540000 | 21.44000 | 27.34000 | 1.097621e+10 | 1.429121e+09 | 18.8300 | 1.670046e+09 | 93.80000 | 7.589555e+09 | 2.412827e+10 | 3.42000 | 2.543815e+09 |
2016-12-31 | 6.704000 | 0.484000 | 191.900000 | 175.46000 | 116.50000 | -5.782313e+09 | 4.171598e+09 | 25.3900 | 4.600311e+09 | 80.81000 | 1.643132e+10 | 2.783806e+10 | 9.52000 | 2.805448e+09 |
2017-03-31 | 6.803750 | 0.092300 | -80.527600 | -75.44800 | -62.53860 | -7.510819e+09 | 8.123113e+08 | 13.1967 | 1.129467e+09 | 93.12270 | 6.155396e+09 | 2.859505e+10 | 1.71430 | 2.805448e+09 |
2017-06-30 | 8.113583 | 0.119000 | 21.938200 | 29.59160 | 24.01330 | -1.018259e+10 | 9.905180e+08 | 12.9759 | 1.463694e+09 | 96.46070 | 7.633513e+09 | 2.876039e+10 | 2.17700 | 2.805448e+09 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2016-03-31 | 13.292000 | -0.065200 | 82.950000 | 88.22000 | 26.23000 | -9.905389e+07 | -3.735655e+07 | -3.5500 | -3.394274e+07 | 140.06000 | 1.052482e+09 | 5.027835e+08 | -1.47000 | 9.548766e+07 |
2016-06-30 | 20.172750 | 0.006800 | 102.320000 | 37.11000 | 5.78000 | 2.154776e+08 | 8.653756e+05 | 0.0800 | -2.134785e+07 | 32.36000 | 1.113317e+09 | 5.064022e+08 | 0.15000 | 9.548766e+07 |
2016-09-30 | 25.900667 | 0.080000 | 880.612820 | 333.87000 | 18.79000 | 6.189952e+07 | 3.913605e+07 | 2.9600 | 4.992677e+07 | 57.81000 | 1.322482e+09 | 5.488654e+08 | 1.75000 | 9.548766e+07 |
2016-12-31 | 23.780000 | 0.098000 | 41.710000 | 62.72000 | 5.95000 | 7.941974e+08 | 5.546059e+07 | 3.9600 | 8.124189e+07 | 138.17000 | 1.401104e+09 | 6.000031e+08 | 1.71000 | 1.024114e+08 |
2017-03-31 | 32.809833 | 0.424600 | 348.590400 | 316.14230 | 24.70000 | -1.637676e+08 | 2.487909e+08 | 14.2396 | 3.380819e+08 | 100.00010 | 1.747176e+09 | 8.516644e+08 | 5.62510 | 1.024114e+08 |
2017-06-30 | 34.699167 | 0.714100 | 70.613700 | 48.37720 | 16.83430 | -4.569780e+08 | 4.244713e+08 | 20.7942 | 5.016365e+08 | 97.53420 | 2.041301e+09 | 1.274913e+09 | 8.83290 | 1.024114e+08 |
2017-09-30 | 52.392000 | 0.710000 | -0.474600 | 0.62610 | 15.48930 | -5.986665e+08 | 4.224566e+08 | 17.9198 | 5.047771e+08 | 104.40210 | 2.357484e+09 | 1.697863e+09 | 8.23450 | 1.024114e+08 |
2017-12-31 | 60.570167 | 0.974590 | 86.981700 | 79.70830 | 48.77140 | -5.751204e+08 | 7.899165e+08 | 22.5223 | 9.071263e+08 | 100.57260 | 3.507261e+09 | 2.451631e+09 | 12.55319 | 1.462961e+08 |
2017-06-30 | 65.165108 | 0.852500 | 551.125300 | 425.46950 | 67.45910 | 8.018877e+08 | 3.585043e+08 | 14.7772 | 3.648609e+08 | 88.93700 | 2.426069e+09 | 2.147579e+09 | 6.80190 | 1.243390e+08 |
2017-09-30 | 65.165108 | 0.974590 | 47.925000 | 77.34540 | 24.83820 | 2.840959e+08 | 5.303175e+08 | 17.5100 | 6.470640e+08 | 97.78170 | 3.028661e+09 | 2.678022e+09 | 9.04540 | 1.243390e+08 |
2017-12-31 | 65.165108 | 0.845500 | -32.975300 | -33.28520 | -7.32880 | 9.786372e+08 | 3.554438e+08 | 12.6641 | 4.316878e+08 | 84.69640 | 2.806695e+09 | 2.966904e+09 | 5.75610 | 1.910564e+08 |
2016-12-31 | 65.165108 | 0.749300 | -21.630000 | -20.40000 | -13.84000 | 1.729370e+08 | 5.119535e+08 | 15.4300 | 5.810783e+08 | 81.10000 | 3.318619e+09 | 7.748695e+09 | 4.86000 | 3.314493e+08 |
2017-03-31 | 64.234083 | 0.326200 | -56.913800 | -54.74740 | -26.81970 | 4.605382e+08 | 2.205816e+08 | 9.0828 | 2.629532e+08 | 92.68790 | 2.428574e+09 | 7.971078e+09 | 1.74870 | 3.314493e+08 |
2017-06-30 | 55.238250 | 0.668400 | 107.150500 | 116.92750 | 36.82380 | 8.443235e+08 | 4.569359e+08 | 13.7513 | 5.704178e+08 | 95.55450 | 3.322868e+09 | 7.326335e+09 | 3.64370 | 3.314493e+08 |
2017-09-30 | 50.384417 | 0.663000 | -0.992800 | -5.61190 | 11.17360 | 3.536411e+08 | 4.523996e+08 | 12.2464 | 5.384065e+08 | 99.56310 | 3.694151e+09 | 7.778353e+09 | 3.64270 | 3.314493e+08 |
2017-12-31 | 45.485250 | 0.744900 | 12.515900 | -28.25140 | 19.60330 | 3.034728e+08 | 5.090213e+08 | 11.5207 | 3.862992e+08 | 60.28630 | 4.418326e+09 | 8.276772e+09 | 3.94060 | 3.409000e+08 |
2016-09-30 | 43.327667 | 0.660000 | -0.250000 | -2.52000 | 13.52000 | 3.466695e+07 | 5.455966e+07 | 13.8700 | 4.610903e+07 | 76.72000 | 3.934187e+08 | 4.382496e+08 | 5.76000 | 2.848906e+07 |
2016-12-31 | 63.220000 | 0.318200 | -47.270000 | -35.00000 | 11.95000 | 4.948543e+07 | 2.876988e+07 | 6.5300 | 2.997250e+07 | 86.46000 | 4.404252e+08 | 4.526373e+08 | 2.53000 | 4.591953e+07 |
2017-03-31 | 65.165108 | 0.694900 | 142.071200 | 151.40060 | 2.71220 | -1.276328e+07 | 6.964360e+07 | 15.3953 | 7.535105e+07 | 95.26150 | 4.523703e+08 | 5.221263e+08 | 5.29540 | 4.591953e+07 |
2017-06-30 | 64.560333 | 0.542500 | 58.797400 | 65.60530 | 7.50630 | 1.466835e+08 | 1.105922e+08 | 22.7403 | 1.247853e+08 | 87.69140 | 4.863266e+08 | 5.790817e+08 | 7.88220 | 4.591953e+07 |
2017-09-30 | 64.561333 | 0.800000 | 44.025500 | 45.64300 | 18.92710 | 1.053011e+08 | 1.592810e+08 | 27.5394 | 1.817411e+08 | 75.23730 | 5.783742e+08 | 7.390937e+08 | 10.50100 | 4.591953e+07 |
2017-12-31 | 65.165108 | 0.286000 | -63.569200 | -69.92590 | -11.36570 | -4.151713e+07 | 5.802732e+07 | 11.3194 | 5.465697e+07 | 86.34940 | 5.126378e+08 | 7.675425e+08 | 3.44990 | 7.543034e+07 |
2016-03-31 | 3.478917 | 0.008400 | 28.550000 | 29.38000 | 13.22000 | 2.648065e+08 | 1.346673e+08 | 11.6400 | 2.324076e+08 | 85.62000 | 1.157333e+09 | 3.128069e+09 | 0.81000 | 7.860501e+08 |
2016-06-30 | 3.649667 | 0.022000 | 172.450000 | 63.27000 | -4.74000 | 2.701510e+08 | 3.668949e+08 | 33.2800 | 3.794460e+08 | 66.48000 | 1.102519e+09 | 3.076703e+09 | 2.13000 | 7.860501e+08 |
2016-09-30 | 3.999250 | 0.004300 | -81.830000 | -65.11000 | 12.12000 | 3.306001e+08 | 6.664981e+07 | 5.3900 | 1.323896e+08 | 67.17000 | 1.236185e+09 | 3.148299e+09 | 0.41000 | 7.860501e+08 |
2016-12-31 | 3.865833 | 0.024500 | 576.710000 | -94.77000 | 179.37000 | 2.049269e+09 | 4.510263e+08 | 13.0600 | 6.925479e+06 | -1.25000 | 3.453534e+09 | 3.508789e+09 | 2.27000 | 8.400989e+08 |
2017-03-31 | 4.363417 | 0.035400 | 121.428400 | 823.59474 | 67.43800 | 1.427245e+09 | 9.987004e+08 | 17.2710 | 1.493162e+09 | 98.09960 | 5.782531e+09 | 4.106009e+09 | 3.13740 | 8.400989e+08 |
2017-06-30 | 4.458667 | 0.014100 | -62.877000 | -58.42810 | 1.55430 | 2.054166e+09 | 3.707473e+08 | 6.3134 | 6.207354e+08 | 155.72380 | 5.872410e+09 | 3.752876e+09 | 1.25080 | 8.400989e+08 |
2017-09-30 | 7.000000 | 0.040000 | 145.893700 | 114.61300 | 3.05120 | 2.185045e+09 | 9.116443e+08 | 15.0645 | 1.332179e+09 | 100.53950 | 6.051591e+09 | 4.522277e+09 | 2.74850 | 8.400989e+08 |
2017-12-31 | 6.722417 | 0.052000 | 44.192600 | 44.95060 | 6.43530 | 2.762356e+09 | 1.314523e+09 | 20.4086 | 1.931002e+09 | 102.56790 | 6.441026e+09 | 5.517441e+09 | 2.97800 | 9.681907e+08 |
2256 rows × 14 columns
df=data_pro
X= df.values[:, 1:]
Y =df.values[:, 0]
X.shape #划分 x和标签y
(2256, 13)
import numpy as np
import matplotlib.pyplot as plt
sampleRatio=0.2 #划分训练集和测试集各一半
m=len(X)
sampleBoundary=int(m*sampleRatio)
myshuffle=list(range(m)) #注意Python3中range()返回range对象而不是数组对象,要将其转为序列
np.random.shuffle(myshuffle) #shuffle()函数将序列内的元素全部随机排序
#分别取出训练集和测试集的数据
train_fea= X[myshuffle[sampleBoundary:]] #前一半数据集作为训练集
train_tar= Y[myshuffle[sampleBoundary:]]
test_fea= X[myshuffle[:sampleBoundary]] #后一半数据作为测试集
test_tar= Y[myshuffle[:sampleBoundary]]
train_fea.shape
(1805, 13)
from sklearn.preprocessing import StandardScaler
ss_x = StandardScaler()
ss_y = StandardScaler()
X=train_fea
y=train_tar
Xt=test_fea
yt=test_tar
X
array([[ 1.59000000e-01, -3.69370000e+00, -6.24900000e+00, ..., 5.43710403e+09, 2.84870000e+00, 3.91315683e+08], [ 1.46000000e-01, 8.80612820e+02, 1.86533700e+02, ..., 1.33470467e+10, 4.15210000e+00, 9.10232816e+08], [ 1.12600000e-01, -6.52300000e+01, -1.43286600e+02, ..., 1.33002496e+10, 2.15000000e+00, 1.36442470e+09], ..., [ 1.17300000e-01, -4.63040000e+00, -2.03390000e+00, ..., 7.83867392e+08, 4.87600000e+00, 3.88474752e+08], [ 5.01000000e-02, 8.93000000e+00, 7.55000000e+00, ..., 6.22280909e+09, 1.28000000e+00, 2.70854323e+09], [ 6.00000000e-02, -6.03700000e+01, -5.79800000e+01, ..., 7.80361165e+09, 1.46000000e+00, 9.09954112e+08]])
X= ss_x.fit_transform(X)
Xt = ss_x.transform(Xt)
X
array([[-0.28493819, -0.31704479, -0.3499504 , ..., -0.35944818, -0.22173938, -0.27304024], [-0.34466505, 4.87134214, 0.81888137, ..., -0.18737853, 0.23614074, -0.24715465], [-0.49811715, -0.67808943, -1.18080245, ..., -0.18839654, -0.46719038, -0.2244978 ], ..., [-0.47652359, -0.32254058, -0.32439446, ..., -0.46067278, 0.49044441, -0.27318196], [-0.78526553, -0.24297925, -0.26628776, ..., -0.34235627, -0.7728185 , -0.15744796], [-0.73978122, -0.64957493, -0.66359284, ..., -0.30796814, -0.7095851 , -0.24716855]])
# 导入库
import numpy as np # numpy库
from sklearn.linear_model import BayesianRidge, LinearRegression, ElasticNet # 批量导入要实现的回归算法
from sklearn.svm import SVR # SVM中的回归算法
from sklearn.ensemble.gradient_boosting import GradientBoostingRegressor # 集成算法
from sklearn.model_selection import cross_val_score # 交叉检验
from sklearn.metrics import explained_variance_score, mean_absolute_error, mean_squared_error, r2_score # 批量导入指标算法
import pandas as pd # 导入pandas
import matplotlib.pyplot as plt # 导入图形展示库
from sklearn.neural_network import MLPRegressor # 多层线性回归
# 训练回归模型
n_folds = 8 # 设置交叉检验的次数
model_br = BayesianRidge() # 建立贝叶斯岭回归模型对象
model_lr = LinearRegression() # 建立普通线性回归模型对象
model_etc = ElasticNet() # 建立弹性网络回归模型对象
model_svr = SVR() # 建立支持向量机回归模型对象
model_gbr = GradientBoostingRegressor() # 建立梯度增强回归模型对象 ,未用
model_mlp = MLPRegressor(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=(8, 4,2), random_state=1)
model_names = ['BayesianRidge', 'LinearRegression', 'SVR', 'mlp'] # 不同模型的名称列表 , 'ElasticNet' 'GBR',
model_dic = [model_br, model_lr, model_svr, model_mlp] # 不同回归模型对象的集合 , model_gbr , model_etc
cv_score_list = [] # 交叉检验结果列表
pre_y_list = [] # 各个回归模型 预测的y值列表
for model in model_dic: # 读出每个回归模型对象
scores = cross_val_score(model, X, y, cv=n_folds) # 将每个回归模型 导入交叉检验模型中 做训练检验
cv_score_list.append(scores) # 将交叉检验结果存入结果列表
pre_y_list.append(model.fit(X, y).predict(Xt)) # 将回归训练中 得到的预测y 存入列表 测试集合
# 模型效果指标评估
n_samples, n_features = X.shape # 总样本量,总特征数
model_metrics_name = [explained_variance_score, mean_absolute_error, mean_squared_error, r2_score] # 回归评估指标对象集
model_metrics_list = [] # 回归评估指标列表
for i in range(len(model_names)): # 循环 每个模型索引
tmp_list = [] # 每个内循环的临时结果列表
for m in model_metrics_name: # 循环每个指标对象
tmp_score = m(yt, pre_y_list[i]) # 计算每个回归指标结果 # 测试集合
tmp_list.append(tmp_score) # 将结果存入每个内循环的临时结果列表
model_metrics_list.append(tmp_list) # 将结果存入回归评估指标列表
df1 = pd.DataFrame(cv_score_list, index=model_names) # 建立交叉检验的数据框
df2 = pd.DataFrame(model_metrics_list, index=model_names, columns=['ev', 'mae', 'mse', 'r2']) # 建立回归指标的数据框
print('ok')
ok
print('ok')
print ('samples: %d \t features: %d' % (n_samples, n_features)) # 打印输出样本量和特征数量
print (70 * '-') # 打印分隔线
print ('cross validation result:') # 打印输出 标题
print (df1) # 打印输出 交叉检验的数据框
print (70 * '-') # 打印分隔线
print ('regression metrics:') # 打印输出 标题
print (df2) # 打印输出回归指标的数据框
print (70 * '-') # 打印分隔线
print ('short name \t full name') # 打印输出 缩写和全名标题
print ('ev \t explained_variance')
print ('mae \t mean_absolute_error')
print ('mse \t mean_squared_error')
print ('r2 \t r2')
print (70 * '-') # 打印分隔线
ok samples: 1805 features: 13 ---------------------------------------------------------------------- cross validation result: 0 1 2 3 4 5 \ BayesianRidge 0.396419 0.322424 0.433829 0.517023 0.306590 0.472300 LinearRegression 0.395534 0.318223 0.438346 0.521255 0.313822 0.472499 SVR 0.344441 0.317279 0.416976 0.417177 0.274501 0.348430 mlp 0.539338 0.536839 0.552823 0.668490 0.400322 0.604423 6 7 BayesianRidge 0.246520 0.332698 LinearRegression 0.248438 0.332534 SVR 0.310007 0.227168 mlp 0.483398 0.481540 ---------------------------------------------------------------------- regression metrics: ev mae mse r2 BayesianRidge 0.393803 7.583999 107.046468 0.393748 LinearRegression 0.398220 7.514669 106.274107 0.398122 SVR 0.374950 7.084663 118.931724 0.326436 mlp 0.571992 6.051157 75.583389 0.571937 ---------------------------------------------------------------------- short name full name ev explained_variance mae mean_absolute_error mse mean_squared_error r2 r2 ----------------------------------------------------------------------
# 模型效果可视化
plt.figure() # 创建画布
plt.plot(np.arange(Xt.shape[0]), yt, color='k', label='true y') # 画出原始值的曲线
color_list = ['r', 'b', 'y', 'c','<', 'g'] # 颜色列表
linestyle_list = ['-', '.', 'o', 'v', '*','m'] # 样式列表
#print(pre_y_list.shape())
for i, pre_y in enumerate(pre_y_list): # 读出通过回归模型 预测得到的索引及结果
#print(i)
#print(len(pre_y))
plt.plot(np.arange(Xt.shape[0]), pre_y_list[i], color_list[i], label=model_names[i]) # 画出每条预测结果线
plt.title('regression result comparison') # 标题
plt.legend(loc='upper right') # 图例位置
plt.ylabel('real and predicted value') # y轴标题
plt.show() # 展示图像
from sklearn import linear_model
#使用最小二乘线性回归进行拟合,导入相应的模块
lr=linear_model.LinearRegression()
lr.fit(train_fea,train_tar) #拟合
y_pred=lr.predict(test_fea) #得到预测值集合y
plt.scatter(y_pred,test_tar) #画出散点图,横轴是预测值,纵轴是真实值
plt.plot([y_pred.min(), y_pred.max()], [y_pred.min(), y_pred.max()], 'b',lw=5) #直线的起点为(y.min(),y.min()),终点是(y.max(),y.max())
plt.show()
coef=lr.coef_ #获得该回该方程的回归系数与截距
intercept=lr.intercept_
print("预测方程回归系数:",coef)
print("预测方程截距:",intercept)
score=lr.score(test_fea,test_tar) #对得到的模型打分
print("对该模型的评分是:%.5f" %score)
#---------------------
预测方程回归系数: [ 4.94600385e+01 -4.60689931e-03 -4.91319668e-03 -1.43372238e-02 2.24022698e-11 -4.31800044e-09 -1.30375890e-02 1.90868281e-09 -3.93320621e-03 -3.00157607e-11 1.31595091e-11 -5.89393971e-01 1.45230980e-10] 预测方程截距: 12.127608740032237 对该模型的评分是:0.39812
train_fea1= ss_x.fit_transform(train_fea)
test_fea1 = ss_x.transform(test_fea)
test_fea1
array([[-0.83626308, -0.18383806, -0.48382639, ..., -0.02133176, -0.89225938, -0.22886553], [-0.55462795, 4.87134214, 1.53034606, ..., -0.33164304, -0.76579257, -0.27966881], [ 0.82230595, -0.23399014, -0.28125294, ..., -0.42781367, 0.95306703, -0.27456991], ..., [ 0.13314985, -0.35535514, -0.37431921, ..., -0.42063523, 0.92594693, -0.28566841], [-0.21602258, -0.51809139, -0.55173142, ..., -0.1192583 , -0.68148136, -0.16249456], [-0.29596469, 4.87134214, 4.68135027, ..., -0.44479642, -0.15102335, -0.28701121]])
from sklearn import linear_model
#使用最小二乘线性回归进行拟合,导入相应的模块
lr=linear_model.LinearRegression()
lr.fit(train_fea1,train_tar) #拟合
y_pred=lr.predict(test_fea1) #得到预测值集合y
plt.scatter(y_pred,test_tar) #画出散点图,横轴是预测值,纵轴是真实值
plt.plot([y_pred.min(), y_pred.max()], [y_pred.min(), y_pred.max()], 'b',lw=5) #直线的起点为(y.min(),y.min()),终点是(y.max(),y.max())
plt.show()
coef=lr.coef_ #获得该回该方程的回归系数与截距
intercept=lr.intercept_
print("预测方程回归系数:",coef)
print("预测方程截距:",intercept)
score=lr.score(test_fea1,test_tar) #对得到的模型打分
print("对该模型的评分是:%.5f" %score)
#---------------------
预测方程回归系数: [ 10.76534865 -0.78519801 -0.81036411 -0.6334516 0.36665001 -15.76471913 -0.20603864 8.75917736 -0.25310459 -1.0281977 0.60493502 -1.67776691 2.91138111] 预测方程截距: 17.05397318789621 对该模型的评分是:0.39812
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
price | eps | inc_net_profit_annual | inc_operation_profit_annual | inc_revenue_annual | net_operate_cash_flow | net_profit | net_profit_margin | operating_profit | operating_profit_to_profit | operating_revenue | retained_profit | roe | surplus_reserve_fund | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unnamed: 0 | ||||||||||||||
2016-03-31 | 8.271833 | 0.42530 | 47.54000 | 43.36000 | 10.0800 | 5.926800e+10 | 6.086000e+09 | 22.11000 | 8.014000e+09 | 87.83000 | 2.753200e+10 | 5.901900e+10 | 3.49000 | 8.521000e+09 |
2016-06-30 | 8.370500 | 0.36140 | 1.97000 | 1.60000 | -1.0700 | -3.381803e+10 | 6.206000e+09 | 22.79000 | 8.142000e+09 | 86.81000 | 2.723700e+10 | 6.303600e+10 | 3.27000 | 8.521000e+09 |
2016-09-30 | 8.921500 | 0.37000 | 3.56000 | 3.03000 | -0.1400 | -3.381803e+10 | 6.427000e+09 | 23.63000 | 8.389000e+09 | 160.49987 | 2.719900e+10 | 6.946300e+10 | 3.30000 | 8.521000e+09 |
2016-12-31 | 8.975500 | 0.22600 | -39.63000 | -37.61000 | -5.3400 | 8.268597e+10 | 3.880000e+09 | 15.07000 | 5.234000e+09 | -228.93400 | 2.574700e+10 | 6.414300e+10 | 1.94000 | 1.078100e+10 |
2017-03-31 | 9.028333 | 0.36190 | 60.15460 | 57.20290 | 7.6320 | -3.381803e+10 | 6.214000e+09 | 22.42350 | 8.228000e+09 | 92.30860 | 2.771200e+10 | 6.948300e+10 | 3.03190 | 1.078100e+10 |
2017-06-30 | 8.753667 | 0.36920 | 2.02770 | 0.14580 | -4.8751 | -1.317200e+10 | 6.340000e+09 | 24.05070 | 8.240000e+09 | 97.56160 | 2.636100e+10 | 7.311000e+10 | 3.02490 | 1.078100e+10 |
2017-09-30 | 10.768917 | 0.38000 | 4.08520 | 3.54370 | -2.2799 | -2.980700e+10 | 6.599000e+09 | 25.61720 | 8.532000e+09 | 98.04870 | 2.576000e+10 | 7.970900e+10 | 3.07240 | 1.078100e+10 |
2017-12-31 | 12.431917 | 0.23510 | -38.83920 | -38.78340 | 0.7492 | 3.920700e+10 | 4.036000e+09 | 15.55120 | 5.223000e+09 | 102.83630 | 2.595300e+10 | 7.966100e+10 | 1.83390 | 1.078100e+10 |
2016-03-31 | 21.820000 | 0.07550 | -92.38000 | -92.07000 | -63.6409 | -1.072613e+10 | 1.249823e+09 | 8.55000 | 1.646601e+09 | 74.77000 | 1.461131e+10 | 5.343109e+10 | 0.83000 | 2.806877e+10 |
2016-06-30 | 21.820000 | 0.40930 | 367.65000 | 401.52000 | 186.8470 | 3.652334e+10 | 5.844807e+09 | 9.71000 | 8.258004e+09 | 88.03000 | 6.018398e+10 | 5.000097e+10 | 4.56000 | 2.806877e+10 |
2016-09-30 | 20.037500 | 0.26000 | -28.22000 | -28.76000 | -29.7800 | 1.718868e+10 | 4.195622e+09 | 9.93000 | 5.882695e+09 | 83.25000 | 4.225951e+10 | 5.291205e+10 | 2.94000 | 2.806877e+10 |
2016-12-31 | 23.069833 | 0.97459 | 306.61000 | 295.00000 | 186.8470 | -3.419766e+09 | 1.706000e+10 | 13.82000 | 2.323648e+10 | 87.88000 | 1.234224e+11 | 6.120027e+10 | 11.93000 | 3.254077e+10 |
2017-03-31 | 19.356917 | 0.06300 | -93.49840 | -93.29070 | -63.6409 | -9.523936e+09 | 1.109171e+09 | 5.96670 | 1.559008e+09 | 82.67640 | 1.858923e+10 | 6.189568e+10 | 0.61160 | 3.254077e+10 |
2017-06-30 | 19.283500 | 0.59850 | 706.35180 | 676.30410 | 175.5426 | 3.137410e+10 | 8.943819e+09 | 17.46110 | 1.210265e+10 | 88.47160 | 5.122125e+10 | 5.978206e+10 | 5.83140 | 3.254077e+10 |
2017-09-30 | 23.069000 | 0.34300 | -46.73930 | -41.94640 | -7.6750 | -5.143923e+09 | 4.763538e+09 | 10.07300 | 7.026021e+09 | 72.91840 | 4.729003e+10 | 6.357034e+10 | 3.30830 | 3.254077e+10 |
2017-12-31 | 27.828917 | 0.97459 | 370.06790 | 328.76670 | 166.0109 | 6.561660e+10 | 1.935970e+10 | 17.80010 | 2.433390e+10 | 90.18650 | 1.257966e+11 | 7.717185e+10 | 12.55319 | 3.590007e+10 |
2016-03-31 | 14.935583 | 0.22860 | 25.60000 | 344.30000 | -30.9700 | 3.945521e+09 | 1.061152e+09 | 4.85000 | 3.142410e+08 | 31.35000 | 2.185851e+10 | 1.462773e+10 | 3.18000 | 2.022709e+09 |
2016-06-30 | 13.704167 | 0.19660 | 6.22000 | -42.35000 | 18.4800 | -1.590590e+09 | 1.127202e+09 | 4.35000 | 1.811750e+08 | -19.15000 | 2.589879e+10 | 1.544462e+10 | 2.68000 | 2.022709e+09 |
2016-09-30 | 14.698833 | 0.26000 | 9.38000 | 152.21000 | -8.0800 | -1.135629e+09 | 1.232917e+09 | 5.18000 | 4.569420e+08 | -9.79000 | 2.380670e+10 | 1.549858e+10 | 3.49000 | 2.022709e+09 |
2016-12-31 | 15.888917 | -0.06989 | -143.27383 | -53.34000 | 24.6300 | 4.040904e+09 | -2.288674e+08 | -9.38658 | 2.131900e+08 | 10.77000 | 2.966918e+10 | 1.028224e+10 | -1.85600 | 2.022709e+09 |
2017-03-31 | 15.712500 | 0.28990 | 127.28130 | 258.39300 | -13.2278 | -9.711650e+08 | 1.317453e+09 | 5.11740 | 7.640580e+08 | 44.21630 | 2.574461e+10 | 1.149584e+10 | 4.49600 | 2.022709e+09 |
2017-06-30 | 19.197167 | 0.25760 | -6.95960 | 231.46210 | 9.7938 | -3.235387e+09 | 1.225763e+09 | 4.33650 | 2.532563e+09 | 75.08140 | 2.826598e+10 | 1.257511e+10 | 3.81530 | 2.022709e+09 |
2017-09-30 | 23.743083 | 0.38000 | 42.83700 | -21.42130 | -20.1544 | 1.036069e+09 | 1.750843e+09 | 7.75770 | 1.990054e+09 | -37.83050 | 2.256914e+10 | 1.418689e+10 | 5.38560 | 2.022709e+09 |
2017-12-31 | 34.003917 | 0.15830 | -37.61390 | -26.32080 | 42.8301 | 1.039046e+10 | 1.092283e+09 | 3.38840 | 1.466255e+09 | -0.65980 | 3.223553e+10 | 1.466768e+10 | 2.12280 | 2.205436e+09 |
2016-03-31 | 6.492583 | 0.07320 | -73.14000 | -69.44000 | -62.8300 | -1.397724e+09 | 6.400020e+08 | 11.64000 | 9.254854e+08 | 95.15000 | 5.500350e+09 | 2.238587e+10 | 1.57000 | 2.543815e+09 |
2016-06-30 | 6.177417 | 0.11930 | 67.22000 | 48.59000 | 8.3500 | 6.076731e+08 | 1.070220e+09 | 17.96000 | 1.375193e+09 | 77.34000 | 5.959879e+09 | 2.279104e+10 | 2.55000 | 2.543815e+09 |
2016-09-30 | 6.598250 | 0.16300 | 33.54000 | 21.44000 | 27.3400 | 1.097621e+10 | 1.429121e+09 | 18.83000 | 1.670046e+09 | 93.80000 | 7.589555e+09 | 2.412827e+10 | 3.42000 | 2.543815e+09 |
2016-12-31 | 6.704000 | 0.48400 | 191.90000 | 175.46000 | 116.5000 | -5.782313e+09 | 4.171598e+09 | 25.39000 | 4.600311e+09 | 80.81000 | 1.643132e+10 | 2.783806e+10 | 9.52000 | 2.805448e+09 |
2017-03-31 | 6.803750 | 0.09230 | -80.52760 | -75.44800 | -62.5386 | -7.510819e+09 | 8.123113e+08 | 13.19670 | 1.129467e+09 | 93.12270 | 6.155396e+09 | 2.859505e+10 | 1.71430 | 2.805448e+09 |
2017-06-30 | 8.113583 | 0.11900 | 21.93820 | 29.59160 | 24.0133 | -1.018259e+10 | 9.905180e+08 | 12.97590 | 1.463694e+09 | 96.46070 | 7.633513e+09 | 2.876039e+10 | 2.17700 | 2.805448e+09 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2016-03-31 | 13.292000 | -0.06520 | 82.95000 | 88.22000 | 26.2300 | -9.905389e+07 | -3.735655e+07 | -3.55000 | -3.394274e+07 | 140.06000 | 1.052482e+09 | 5.027835e+08 | -1.47000 | 9.548766e+07 |
2016-06-30 | 20.172750 | 0.00680 | 102.32000 | 37.11000 | 5.7800 | 2.154776e+08 | 8.653756e+05 | 0.08000 | -2.134785e+07 | 32.36000 | 1.113317e+09 | 5.064022e+08 | 0.15000 | 9.548766e+07 |
2016-09-30 | 25.900667 | 0.08000 | 880.61282 | 333.87000 | 18.7900 | 6.189952e+07 | 3.913605e+07 | 2.96000 | 4.992677e+07 | 57.81000 | 1.322482e+09 | 5.488654e+08 | 1.75000 | 9.548766e+07 |
2016-12-31 | 23.780000 | 0.09800 | 41.71000 | 62.72000 | 5.9500 | 7.941974e+08 | 5.546059e+07 | 3.96000 | 8.124189e+07 | 138.17000 | 1.401104e+09 | 6.000031e+08 | 1.71000 | 1.024114e+08 |
2017-03-31 | 32.809833 | 0.42460 | 348.59040 | 316.14230 | 24.7000 | -1.637676e+08 | 2.487909e+08 | 14.23960 | 3.380819e+08 | 100.00010 | 1.747176e+09 | 8.516644e+08 | 5.62510 | 1.024114e+08 |
2017-06-30 | 34.699167 | 0.71410 | 70.61370 | 48.37720 | 16.8343 | -4.569780e+08 | 4.244713e+08 | 20.79420 | 5.016365e+08 | 97.53420 | 2.041301e+09 | 1.274913e+09 | 8.83290 | 1.024114e+08 |
2017-09-30 | 52.392000 | 0.71000 | -0.47460 | 0.62610 | 15.4893 | -5.986665e+08 | 4.224566e+08 | 17.91980 | 5.047771e+08 | 104.40210 | 2.357484e+09 | 1.697863e+09 | 8.23450 | 1.024114e+08 |
2017-12-31 | 60.570167 | 0.97459 | 86.98170 | 79.70830 | 48.7714 | -5.751204e+08 | 7.899165e+08 | 22.52230 | 9.071263e+08 | 100.57260 | 3.507261e+09 | 2.451631e+09 | 12.55319 | 1.462961e+08 |
2017-06-30 | 65.165108 | 0.85250 | 551.12530 | 425.46950 | 67.4591 | 8.018877e+08 | 3.585043e+08 | 14.77720 | 3.648609e+08 | 88.93700 | 2.426069e+09 | 2.147579e+09 | 6.80190 | 1.243390e+08 |
2017-09-30 | 65.165108 | 0.97459 | 47.92500 | 77.34540 | 24.8382 | 2.840959e+08 | 5.303175e+08 | 17.51000 | 6.470640e+08 | 97.78170 | 3.028661e+09 | 2.678022e+09 | 9.04540 | 1.243390e+08 |
2017-12-31 | 65.165108 | 0.84550 | -32.97530 | -33.28520 | -7.3288 | 9.786372e+08 | 3.554438e+08 | 12.66410 | 4.316878e+08 | 84.69640 | 2.806695e+09 | 2.966904e+09 | 5.75610 | 1.910564e+08 |
2016-12-31 | 65.165108 | 0.74930 | -21.63000 | -20.40000 | -13.8400 | 1.729370e+08 | 5.119535e+08 | 15.43000 | 5.810783e+08 | 81.10000 | 3.318619e+09 | 7.748695e+09 | 4.86000 | 3.314493e+08 |
2017-03-31 | 64.234083 | 0.32620 | -56.91380 | -54.74740 | -26.8197 | 4.605382e+08 | 2.205816e+08 | 9.08280 | 2.629532e+08 | 92.68790 | 2.428574e+09 | 7.971078e+09 | 1.74870 | 3.314493e+08 |
2017-06-30 | 55.238250 | 0.66840 | 107.15050 | 116.92750 | 36.8238 | 8.443235e+08 | 4.569359e+08 | 13.75130 | 5.704178e+08 | 95.55450 | 3.322868e+09 | 7.326335e+09 | 3.64370 | 3.314493e+08 |
2017-09-30 | 50.384417 | 0.66300 | -0.99280 | -5.61190 | 11.1736 | 3.536411e+08 | 4.523996e+08 | 12.24640 | 5.384065e+08 | 99.56310 | 3.694151e+09 | 7.778353e+09 | 3.64270 | 3.314493e+08 |
2017-12-31 | 45.485250 | 0.74490 | 12.51590 | -28.25140 | 19.6033 | 3.034728e+08 | 5.090213e+08 | 11.52070 | 3.862992e+08 | 60.28630 | 4.418326e+09 | 8.276772e+09 | 3.94060 | 3.409000e+08 |
2016-09-30 | 43.327667 | 0.66000 | -0.25000 | -2.52000 | 13.5200 | 3.466695e+07 | 5.455966e+07 | 13.87000 | 4.610903e+07 | 76.72000 | 3.934187e+08 | 4.382496e+08 | 5.76000 | 2.954503e+07 |
2016-12-31 | 63.220000 | 0.31820 | -47.27000 | -35.00000 | 11.9500 | 4.948543e+07 | 2.876988e+07 | 6.53000 | 2.997250e+07 | 86.46000 | 4.404252e+08 | 4.526373e+08 | 2.53000 | 4.591953e+07 |
2017-03-31 | 65.165108 | 0.69490 | 142.07120 | 151.40060 | 2.7122 | -1.276328e+07 | 6.964360e+07 | 15.39530 | 7.535105e+07 | 95.26150 | 4.523703e+08 | 5.221263e+08 | 5.29540 | 4.591953e+07 |
2017-06-30 | 64.560333 | 0.54250 | 58.79740 | 65.60530 | 7.5063 | 1.466835e+08 | 1.105922e+08 | 22.74030 | 1.247853e+08 | 87.69140 | 4.863266e+08 | 5.790817e+08 | 7.88220 | 4.591953e+07 |
2017-09-30 | 64.561333 | 0.80000 | 44.02550 | 45.64300 | 18.9271 | 1.053011e+08 | 1.592810e+08 | 27.53940 | 1.817411e+08 | 75.23730 | 5.783742e+08 | 7.390937e+08 | 10.50100 | 4.591953e+07 |
2017-12-31 | 65.165108 | 0.28600 | -63.56920 | -69.92590 | -11.3657 | -4.151713e+07 | 5.802732e+07 | 11.31940 | 5.465697e+07 | 86.34940 | 5.126378e+08 | 7.675425e+08 | 3.44990 | 7.543034e+07 |
2016-03-31 | 3.478917 | 0.00840 | 28.55000 | 29.38000 | 13.2200 | 2.648065e+08 | 1.346673e+08 | 11.64000 | 2.324076e+08 | 85.62000 | 1.157333e+09 | 3.128069e+09 | 0.81000 | 7.860501e+08 |
2016-06-30 | 3.649667 | 0.02200 | 172.45000 | 63.27000 | -4.7400 | 2.701510e+08 | 3.668949e+08 | 33.28000 | 3.794460e+08 | 66.48000 | 1.102519e+09 | 3.076703e+09 | 2.13000 | 7.860501e+08 |
2016-09-30 | 3.999250 | 0.00430 | -81.83000 | -65.11000 | 12.1200 | 3.306001e+08 | 6.664981e+07 | 5.39000 | 1.323896e+08 | 67.17000 | 1.236185e+09 | 3.148299e+09 | 0.41000 | 7.860501e+08 |
2016-12-31 | 3.865833 | 0.02450 | 576.71000 | -94.77000 | 179.3700 | 2.049269e+09 | 4.510263e+08 | 13.06000 | 6.925479e+06 | -1.25000 | 3.453534e+09 | 3.508789e+09 | 2.27000 | 8.400989e+08 |
2017-03-31 | 4.363417 | 0.03540 | 121.42840 | 823.59474 | 67.4380 | 1.427245e+09 | 9.987004e+08 | 17.27100 | 1.493162e+09 | 98.09960 | 5.782531e+09 | 4.106009e+09 | 3.13740 | 8.400989e+08 |
2017-06-30 | 4.458667 | 0.01410 | -62.87700 | -58.42810 | 1.5543 | 2.054166e+09 | 3.707473e+08 | 6.31340 | 6.207354e+08 | 155.72380 | 5.872410e+09 | 3.752876e+09 | 1.25080 | 8.400989e+08 |
2017-09-30 | 7.000000 | 0.04000 | 145.89370 | 114.61300 | 3.0512 | 2.185045e+09 | 9.116443e+08 | 15.06450 | 1.332179e+09 | 100.53950 | 6.051591e+09 | 4.522277e+09 | 2.74850 | 8.400989e+08 |
2017-12-31 | 6.722417 | 0.05200 | 44.19260 | 44.95060 | 6.4353 | 2.762356e+09 | 1.314523e+09 | 20.40860 | 1.931002e+09 | 102.56790 | 6.441026e+09 | 5.517441e+09 | 2.97800 | 9.681907e+08 |
2256 rows × 14 columns
df.drop(labels=['price'], axis=1,inplace = True)
#df.insert(0, 'close', close)
df
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
eps | inc_net_profit_annual | inc_operation_profit_annual | inc_revenue_annual | net_operate_cash_flow | net_profit | net_profit_margin | operating_profit | operating_profit_to_profit | operating_revenue | retained_profit | roe | surplus_reserve_fund | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unnamed: 0 | |||||||||||||
2016-03-31 | 0.42530 | 47.54000 | 43.36000 | 10.0800 | 5.926800e+10 | 6.086000e+09 | 22.11000 | 8.014000e+09 | 87.83000 | 2.753200e+10 | 5.901900e+10 | 3.49000 | 8.521000e+09 |
2016-06-30 | 0.36140 | 1.97000 | 1.60000 | -1.0700 | -3.381803e+10 | 6.206000e+09 | 22.79000 | 8.142000e+09 | 86.81000 | 2.723700e+10 | 6.303600e+10 | 3.27000 | 8.521000e+09 |
2016-09-30 | 0.37000 | 3.56000 | 3.03000 | -0.1400 | -3.381803e+10 | 6.427000e+09 | 23.63000 | 8.389000e+09 | 160.49987 | 2.719900e+10 | 6.946300e+10 | 3.30000 | 8.521000e+09 |
2016-12-31 | 0.22600 | -39.63000 | -37.61000 | -5.3400 | 8.268597e+10 | 3.880000e+09 | 15.07000 | 5.234000e+09 | -228.93400 | 2.574700e+10 | 6.414300e+10 | 1.94000 | 1.078100e+10 |
2017-03-31 | 0.36190 | 60.15460 | 57.20290 | 7.6320 | -3.381803e+10 | 6.214000e+09 | 22.42350 | 8.228000e+09 | 92.30860 | 2.771200e+10 | 6.948300e+10 | 3.03190 | 1.078100e+10 |
2017-06-30 | 0.36920 | 2.02770 | 0.14580 | -4.8751 | -1.317200e+10 | 6.340000e+09 | 24.05070 | 8.240000e+09 | 97.56160 | 2.636100e+10 | 7.311000e+10 | 3.02490 | 1.078100e+10 |
2017-09-30 | 0.38000 | 4.08520 | 3.54370 | -2.2799 | -2.980700e+10 | 6.599000e+09 | 25.61720 | 8.532000e+09 | 98.04870 | 2.576000e+10 | 7.970900e+10 | 3.07240 | 1.078100e+10 |
2017-12-31 | 0.23510 | -38.83920 | -38.78340 | 0.7492 | 3.920700e+10 | 4.036000e+09 | 15.55120 | 5.223000e+09 | 102.83630 | 2.595300e+10 | 7.966100e+10 | 1.83390 | 1.078100e+10 |
2016-03-31 | 0.07550 | -92.38000 | -92.07000 | -63.6409 | -1.072613e+10 | 1.249823e+09 | 8.55000 | 1.646601e+09 | 74.77000 | 1.461131e+10 | 5.343109e+10 | 0.83000 | 2.806877e+10 |
2016-06-30 | 0.40930 | 367.65000 | 401.52000 | 186.8470 | 3.652334e+10 | 5.844807e+09 | 9.71000 | 8.258004e+09 | 88.03000 | 6.018398e+10 | 5.000097e+10 | 4.56000 | 2.806877e+10 |
2016-09-30 | 0.26000 | -28.22000 | -28.76000 | -29.7800 | 1.718868e+10 | 4.195622e+09 | 9.93000 | 5.882695e+09 | 83.25000 | 4.225951e+10 | 5.291205e+10 | 2.94000 | 2.806877e+10 |
2016-12-31 | 0.97459 | 306.61000 | 295.00000 | 186.8470 | -3.419766e+09 | 1.706000e+10 | 13.82000 | 2.323648e+10 | 87.88000 | 1.234224e+11 | 6.120027e+10 | 11.93000 | 3.254077e+10 |
2017-03-31 | 0.06300 | -93.49840 | -93.29070 | -63.6409 | -9.523936e+09 | 1.109171e+09 | 5.96670 | 1.559008e+09 | 82.67640 | 1.858923e+10 | 6.189568e+10 | 0.61160 | 3.254077e+10 |
2017-06-30 | 0.59850 | 706.35180 | 676.30410 | 175.5426 | 3.137410e+10 | 8.943819e+09 | 17.46110 | 1.210265e+10 | 88.47160 | 5.122125e+10 | 5.978206e+10 | 5.83140 | 3.254077e+10 |
2017-09-30 | 0.34300 | -46.73930 | -41.94640 | -7.6750 | -5.143923e+09 | 4.763538e+09 | 10.07300 | 7.026021e+09 | 72.91840 | 4.729003e+10 | 6.357034e+10 | 3.30830 | 3.254077e+10 |
2017-12-31 | 0.97459 | 370.06790 | 328.76670 | 166.0109 | 6.561660e+10 | 1.935970e+10 | 17.80010 | 2.433390e+10 | 90.18650 | 1.257966e+11 | 7.717185e+10 | 12.55319 | 3.590007e+10 |
2016-03-31 | 0.22860 | 25.60000 | 344.30000 | -30.9700 | 3.945521e+09 | 1.061152e+09 | 4.85000 | 3.142410e+08 | 31.35000 | 2.185851e+10 | 1.462773e+10 | 3.18000 | 2.022709e+09 |
2016-06-30 | 0.19660 | 6.22000 | -42.35000 | 18.4800 | -1.590590e+09 | 1.127202e+09 | 4.35000 | 1.811750e+08 | -19.15000 | 2.589879e+10 | 1.544462e+10 | 2.68000 | 2.022709e+09 |
2016-09-30 | 0.26000 | 9.38000 | 152.21000 | -8.0800 | -1.135629e+09 | 1.232917e+09 | 5.18000 | 4.569420e+08 | -9.79000 | 2.380670e+10 | 1.549858e+10 | 3.49000 | 2.022709e+09 |
2016-12-31 | -0.06989 | -143.27383 | -53.34000 | 24.6300 | 4.040904e+09 | -2.288674e+08 | -9.38658 | 2.131900e+08 | 10.77000 | 2.966918e+10 | 1.028224e+10 | -1.85600 | 2.022709e+09 |
2017-03-31 | 0.28990 | 127.28130 | 258.39300 | -13.2278 | -9.711650e+08 | 1.317453e+09 | 5.11740 | 7.640580e+08 | 44.21630 | 2.574461e+10 | 1.149584e+10 | 4.49600 | 2.022709e+09 |
2017-06-30 | 0.25760 | -6.95960 | 231.46210 | 9.7938 | -3.235387e+09 | 1.225763e+09 | 4.33650 | 2.532563e+09 | 75.08140 | 2.826598e+10 | 1.257511e+10 | 3.81530 | 2.022709e+09 |
2017-09-30 | 0.38000 | 42.83700 | -21.42130 | -20.1544 | 1.036069e+09 | 1.750843e+09 | 7.75770 | 1.990054e+09 | -37.83050 | 2.256914e+10 | 1.418689e+10 | 5.38560 | 2.022709e+09 |
2017-12-31 | 0.15830 | -37.61390 | -26.32080 | 42.8301 | 1.039046e+10 | 1.092283e+09 | 3.38840 | 1.466255e+09 | -0.65980 | 3.223553e+10 | 1.466768e+10 | 2.12280 | 2.205436e+09 |
2016-03-31 | 0.07320 | -73.14000 | -69.44000 | -62.8300 | -1.397724e+09 | 6.400020e+08 | 11.64000 | 9.254854e+08 | 95.15000 | 5.500350e+09 | 2.238587e+10 | 1.57000 | 2.543815e+09 |
2016-06-30 | 0.11930 | 67.22000 | 48.59000 | 8.3500 | 6.076731e+08 | 1.070220e+09 | 17.96000 | 1.375193e+09 | 77.34000 | 5.959879e+09 | 2.279104e+10 | 2.55000 | 2.543815e+09 |
2016-09-30 | 0.16300 | 33.54000 | 21.44000 | 27.3400 | 1.097621e+10 | 1.429121e+09 | 18.83000 | 1.670046e+09 | 93.80000 | 7.589555e+09 | 2.412827e+10 | 3.42000 | 2.543815e+09 |
2016-12-31 | 0.48400 | 191.90000 | 175.46000 | 116.5000 | -5.782313e+09 | 4.171598e+09 | 25.39000 | 4.600311e+09 | 80.81000 | 1.643132e+10 | 2.783806e+10 | 9.52000 | 2.805448e+09 |
2017-03-31 | 0.09230 | -80.52760 | -75.44800 | -62.5386 | -7.510819e+09 | 8.123113e+08 | 13.19670 | 1.129467e+09 | 93.12270 | 6.155396e+09 | 2.859505e+10 | 1.71430 | 2.805448e+09 |
2017-06-30 | 0.11900 | 21.93820 | 29.59160 | 24.0133 | -1.018259e+10 | 9.905180e+08 | 12.97590 | 1.463694e+09 | 96.46070 | 7.633513e+09 | 2.876039e+10 | 2.17700 | 2.805448e+09 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2016-03-31 | -0.06520 | 82.95000 | 88.22000 | 26.2300 | -9.905389e+07 | -3.735655e+07 | -3.55000 | -3.394274e+07 | 140.06000 | 1.052482e+09 | 5.027835e+08 | -1.47000 | 9.548766e+07 |
2016-06-30 | 0.00680 | 102.32000 | 37.11000 | 5.7800 | 2.154776e+08 | 8.653756e+05 | 0.08000 | -2.134785e+07 | 32.36000 | 1.113317e+09 | 5.064022e+08 | 0.15000 | 9.548766e+07 |
2016-09-30 | 0.08000 | 880.61282 | 333.87000 | 18.7900 | 6.189952e+07 | 3.913605e+07 | 2.96000 | 4.992677e+07 | 57.81000 | 1.322482e+09 | 5.488654e+08 | 1.75000 | 9.548766e+07 |
2016-12-31 | 0.09800 | 41.71000 | 62.72000 | 5.9500 | 7.941974e+08 | 5.546059e+07 | 3.96000 | 8.124189e+07 | 138.17000 | 1.401104e+09 | 6.000031e+08 | 1.71000 | 1.024114e+08 |
2017-03-31 | 0.42460 | 348.59040 | 316.14230 | 24.7000 | -1.637676e+08 | 2.487909e+08 | 14.23960 | 3.380819e+08 | 100.00010 | 1.747176e+09 | 8.516644e+08 | 5.62510 | 1.024114e+08 |
2017-06-30 | 0.71410 | 70.61370 | 48.37720 | 16.8343 | -4.569780e+08 | 4.244713e+08 | 20.79420 | 5.016365e+08 | 97.53420 | 2.041301e+09 | 1.274913e+09 | 8.83290 | 1.024114e+08 |
2017-09-30 | 0.71000 | -0.47460 | 0.62610 | 15.4893 | -5.986665e+08 | 4.224566e+08 | 17.91980 | 5.047771e+08 | 104.40210 | 2.357484e+09 | 1.697863e+09 | 8.23450 | 1.024114e+08 |
2017-12-31 | 0.97459 | 86.98170 | 79.70830 | 48.7714 | -5.751204e+08 | 7.899165e+08 | 22.52230 | 9.071263e+08 | 100.57260 | 3.507261e+09 | 2.451631e+09 | 12.55319 | 1.462961e+08 |
2017-06-30 | 0.85250 | 551.12530 | 425.46950 | 67.4591 | 8.018877e+08 | 3.585043e+08 | 14.77720 | 3.648609e+08 | 88.93700 | 2.426069e+09 | 2.147579e+09 | 6.80190 | 1.243390e+08 |
2017-09-30 | 0.97459 | 47.92500 | 77.34540 | 24.8382 | 2.840959e+08 | 5.303175e+08 | 17.51000 | 6.470640e+08 | 97.78170 | 3.028661e+09 | 2.678022e+09 | 9.04540 | 1.243390e+08 |
2017-12-31 | 0.84550 | -32.97530 | -33.28520 | -7.3288 | 9.786372e+08 | 3.554438e+08 | 12.66410 | 4.316878e+08 | 84.69640 | 2.806695e+09 | 2.966904e+09 | 5.75610 | 1.910564e+08 |
2016-12-31 | 0.74930 | -21.63000 | -20.40000 | -13.8400 | 1.729370e+08 | 5.119535e+08 | 15.43000 | 5.810783e+08 | 81.10000 | 3.318619e+09 | 7.748695e+09 | 4.86000 | 3.314493e+08 |
2017-03-31 | 0.32620 | -56.91380 | -54.74740 | -26.8197 | 4.605382e+08 | 2.205816e+08 | 9.08280 | 2.629532e+08 | 92.68790 | 2.428574e+09 | 7.971078e+09 | 1.74870 | 3.314493e+08 |
2017-06-30 | 0.66840 | 107.15050 | 116.92750 | 36.8238 | 8.443235e+08 | 4.569359e+08 | 13.75130 | 5.704178e+08 | 95.55450 | 3.322868e+09 | 7.326335e+09 | 3.64370 | 3.314493e+08 |
2017-09-30 | 0.66300 | -0.99280 | -5.61190 | 11.1736 | 3.536411e+08 | 4.523996e+08 | 12.24640 | 5.384065e+08 | 99.56310 | 3.694151e+09 | 7.778353e+09 | 3.64270 | 3.314493e+08 |
2017-12-31 | 0.74490 | 12.51590 | -28.25140 | 19.6033 | 3.034728e+08 | 5.090213e+08 | 11.52070 | 3.862992e+08 | 60.28630 | 4.418326e+09 | 8.276772e+09 | 3.94060 | 3.409000e+08 |
2016-09-30 | 0.66000 | -0.25000 | -2.52000 | 13.5200 | 3.466695e+07 | 5.455966e+07 | 13.87000 | 4.610903e+07 | 76.72000 | 3.934187e+08 | 4.382496e+08 | 5.76000 | 2.954503e+07 |
2016-12-31 | 0.31820 | -47.27000 | -35.00000 | 11.9500 | 4.948543e+07 | 2.876988e+07 | 6.53000 | 2.997250e+07 | 86.46000 | 4.404252e+08 | 4.526373e+08 | 2.53000 | 4.591953e+07 |
2017-03-31 | 0.69490 | 142.07120 | 151.40060 | 2.7122 | -1.276328e+07 | 6.964360e+07 | 15.39530 | 7.535105e+07 | 95.26150 | 4.523703e+08 | 5.221263e+08 | 5.29540 | 4.591953e+07 |
2017-06-30 | 0.54250 | 58.79740 | 65.60530 | 7.5063 | 1.466835e+08 | 1.105922e+08 | 22.74030 | 1.247853e+08 | 87.69140 | 4.863266e+08 | 5.790817e+08 | 7.88220 | 4.591953e+07 |
2017-09-30 | 0.80000 | 44.02550 | 45.64300 | 18.9271 | 1.053011e+08 | 1.592810e+08 | 27.53940 | 1.817411e+08 | 75.23730 | 5.783742e+08 | 7.390937e+08 | 10.50100 | 4.591953e+07 |
2017-12-31 | 0.28600 | -63.56920 | -69.92590 | -11.3657 | -4.151713e+07 | 5.802732e+07 | 11.31940 | 5.465697e+07 | 86.34940 | 5.126378e+08 | 7.675425e+08 | 3.44990 | 7.543034e+07 |
2016-03-31 | 0.00840 | 28.55000 | 29.38000 | 13.2200 | 2.648065e+08 | 1.346673e+08 | 11.64000 | 2.324076e+08 | 85.62000 | 1.157333e+09 | 3.128069e+09 | 0.81000 | 7.860501e+08 |
2016-06-30 | 0.02200 | 172.45000 | 63.27000 | -4.7400 | 2.701510e+08 | 3.668949e+08 | 33.28000 | 3.794460e+08 | 66.48000 | 1.102519e+09 | 3.076703e+09 | 2.13000 | 7.860501e+08 |
2016-09-30 | 0.00430 | -81.83000 | -65.11000 | 12.1200 | 3.306001e+08 | 6.664981e+07 | 5.39000 | 1.323896e+08 | 67.17000 | 1.236185e+09 | 3.148299e+09 | 0.41000 | 7.860501e+08 |
2016-12-31 | 0.02450 | 576.71000 | -94.77000 | 179.3700 | 2.049269e+09 | 4.510263e+08 | 13.06000 | 6.925479e+06 | -1.25000 | 3.453534e+09 | 3.508789e+09 | 2.27000 | 8.400989e+08 |
2017-03-31 | 0.03540 | 121.42840 | 823.59474 | 67.4380 | 1.427245e+09 | 9.987004e+08 | 17.27100 | 1.493162e+09 | 98.09960 | 5.782531e+09 | 4.106009e+09 | 3.13740 | 8.400989e+08 |
2017-06-30 | 0.01410 | -62.87700 | -58.42810 | 1.5543 | 2.054166e+09 | 3.707473e+08 | 6.31340 | 6.207354e+08 | 155.72380 | 5.872410e+09 | 3.752876e+09 | 1.25080 | 8.400989e+08 |
2017-09-30 | 0.04000 | 145.89370 | 114.61300 | 3.0512 | 2.185045e+09 | 9.116443e+08 | 15.06450 | 1.332179e+09 | 100.53950 | 6.051591e+09 | 4.522277e+09 | 2.74850 | 8.400989e+08 |
2017-12-31 | 0.05200 | 44.19260 | 44.95060 | 6.4353 | 2.762356e+09 | 1.314523e+09 | 20.40860 | 1.931002e+09 | 102.56790 | 6.441026e+09 | 5.517441e+09 | 2.97800 | 9.681907e+08 |
2256 rows × 13 columns
from sklearn.decomposition import PCA
from sklearn.model_selection import train_test_split
#PCA降维
def pca_analysis(data,n_components='mle'):
index = data.index
model = PCA(n_components=n_components)
model.fit(data)
data_pca = model.transform(data)
df = pd.DataFrame(data_pca,index=index)
return df
data_pca = pca_analysis(df,n_components=0.95)
data_pca
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
0 | 1 | 2 | |
---|---|---|---|
Unnamed: 0 | |||
2016-03-31 | 4.343270e+10 | -1.026006e+10 | 4.902812e+10 |
2016-06-30 | 3.287826e+10 | -1.140296e+10 | -4.315701e+10 |
2016-09-30 | 3.790962e+10 | -1.440138e+10 | -4.418137e+10 |
2016-12-31 | 5.024880e+10 | -1.478877e+10 | 7.160921e+10 |
2017-03-31 | 3.883285e+10 | -1.456683e+10 | -4.409100e+10 |
2017-06-30 | 4.397330e+10 | -1.759138e+10 | -2.427773e+10 |
2017-09-30 | 4.642744e+10 | -2.097654e+10 | -4.166044e+10 |
2017-12-31 | 5.615690e+10 | -2.129316e+10 | 2.637746e+10 |
2016-03-31 | 2.711036e+10 | -2.272108e+10 | -1.687393e+10 |
2016-06-30 | 5.590668e+10 | 1.651445e+10 | 2.711221e+10 |
2016-09-30 | 4.571670e+10 | 3.596123e+08 | 8.816557e+09 |
2016-12-31 | 9.497311e+10 | 6.315073e+10 | -1.820863e+10 |
2017-03-31 | 3.727789e+10 | -2.443916e+10 | -1.703291e+10 |
2017-06-30 | 5.986892e+10 | 3.056683e+09 | 2.108105e+10 |
2017-09-30 | 5.485090e+10 | -1.302605e+09 | -1.495390e+10 |
2017-12-31 | 1.199402e+11 | 5.610649e+10 | 4.711828e+10 |
2016-03-31 | -5.016827e+09 | 8.076258e+09 | 1.970677e+09 |
2016-06-30 | -3.075231e+09 | 1.117917e+10 | -3.843394e+09 |
2016-09-30 | -4.036353e+09 | 9.365956e+09 | -3.289650e+09 |
2016-12-31 | -4.388740e+09 | 1.672073e+10 | 2.316428e+09 |
2017-03-31 | -6.097973e+09 | 1.282599e+10 | -2.623242e+09 |
2017-06-30 | -4.142437e+09 | 1.442046e+10 | -5.220753e+09 |
2017-09-30 | -5.253224e+09 | 8.822691e+09 | -9.293062e+08 |
2017-12-31 | 1.524061e+09 | 1.667456e+10 | 7.657516e+09 |
2016-03-31 | -8.125639e+09 | -9.416483e+09 | -3.510938e+09 |
2016-06-30 | -7.219796e+09 | -9.265356e+09 | -1.653201e+09 |
2016-09-30 | -3.770571e+09 | -8.630082e+09 | 8.219842e+09 |
2016-12-31 | 1.759500e+09 | -2.950616e+09 | -9.516879e+09 |
2017-03-31 | -3.720857e+09 | -1.173234e+10 | -1.053979e+10 |
2017-06-30 | -3.172705e+09 | -1.054898e+10 | -1.329641e+10 |
... | ... | ... | ... |
2016-03-31 | -2.818630e+10 | -2.436792e+09 | 1.406017e+09 |
2016-06-30 | -2.810275e+10 | -2.391915e+09 | 1.709901e+09 |
2016-09-30 | -2.797513e+10 | -2.236869e+09 | 1.536625e+09 |
2016-12-31 | -2.778218e+10 | -2.204958e+09 | 2.243209e+09 |
2017-03-31 | -2.751445e+10 | -2.033910e+09 | 1.228395e+09 |
2017-06-30 | -2.705078e+10 | -1.988206e+09 | 8.466173e+08 |
2017-09-30 | -2.657533e+10 | -1.913468e+09 | 6.215314e+08 |
2017-12-31 | -2.531843e+10 | -1.325950e+09 | 4.386200e+08 |
2017-06-30 | -2.599141e+10 | -2.074676e+09 | 1.930794e+09 |
2017-09-30 | -2.530689e+10 | -1.819447e+09 | 1.289378e+09 |
2017-12-31 | -2.510212e+10 | -2.150891e+09 | 1.954085e+09 |
2016-12-31 | -2.115495e+10 | -3.952395e+09 | 3.753818e+08 |
2017-03-31 | -2.144472e+10 | -4.788801e+09 | 6.927114e+08 |
2017-06-30 | -2.138881e+10 | -3.759743e+09 | 1.103803e+09 |
2017-09-30 | -2.091530e+10 | -3.646689e+09 | 5.286290e+08 |
2017-12-31 | -2.015903e+10 | -3.260688e+09 | 3.607933e+08 |
2016-09-30 | -2.857067e+10 | -2.954438e+09 | 1.579328e+09 |
2016-12-31 | -2.853049e+10 | -2.924369e+09 | 1.590736e+09 |
2017-03-31 | -2.847343e+10 | -2.948562e+09 | 1.515527e+09 |
2017-06-30 | -2.838206e+10 | -2.950828e+09 | 1.658926e+09 |
2017-09-30 | -2.820804e+10 | -2.949721e+09 | 1.584637e+09 |
2017-12-31 | -2.824783e+10 | -3.016628e+09 | 1.447283e+09 |
2016-03-31 | -2.579608e+10 | -3.756812e+09 | 1.366496e+09 |
2016-06-30 | -2.584040e+10 | -3.792631e+09 | 1.373294e+09 |
2016-09-30 | -2.574046e+10 | -3.694048e+09 | 1.427834e+09 |
2016-12-31 | -2.401904e+10 | -2.023038e+09 | 2.925835e+09 |
2017-03-31 | -2.228576e+10 | -3.958155e+08 | 2.024033e+09 |
2017-06-30 | -2.252161e+10 | -1.105224e+08 | 2.731423e+09 |
2017-09-30 | -2.172586e+10 | -3.580749e+08 | 2.694390e+09 |
2017-12-31 | -2.055700e+10 | -5.614782e+08 | 3.061337e+09 |
2256 rows × 3 columns
data_pca.insert( 0, 'price', price)
data_pca
.dataframe tbody tr th:only-of-type {
vertical-align: middle;
}
.dataframe tbody tr th {
vertical-align: top;
}
.dataframe thead th {
text-align: right;
}
price | 0 | 1 | 2 | |
---|---|---|---|---|
Unnamed: 0 | ||||
2016-03-31 | 8.271833 | 4.343270e+10 | -1.026006e+10 | 4.902812e+10 |
2016-06-30 | 8.370500 | 3.287826e+10 | -1.140296e+10 | -4.315701e+10 |
2016-09-30 | 8.921500 | 3.790962e+10 | -1.440138e+10 | -4.418137e+10 |
2016-12-31 | 8.975500 | 5.024880e+10 | -1.478877e+10 | 7.160921e+10 |
2017-03-31 | 9.028333 | 3.883285e+10 | -1.456683e+10 | -4.409100e+10 |
2017-06-30 | 8.753667 | 4.397330e+10 | -1.759138e+10 | -2.427773e+10 |
2017-09-30 | 10.768917 | 4.642744e+10 | -2.097654e+10 | -4.166044e+10 |
2017-12-31 | 12.431917 | 5.615690e+10 | -2.129316e+10 | 2.637746e+10 |
2016-03-31 | 21.820000 | 2.711036e+10 | -2.272108e+10 | -1.687393e+10 |
2016-06-30 | 21.820000 | 5.590668e+10 | 1.651445e+10 | 2.711221e+10 |
2016-09-30 | 20.037500 | 4.571670e+10 | 3.596123e+08 | 8.816557e+09 |
2016-12-31 | 23.069833 | 9.497311e+10 | 6.315073e+10 | -1.820863e+10 |
2017-03-31 | 19.356917 | 3.727789e+10 | -2.443916e+10 | -1.703291e+10 |
2017-06-30 | 19.283500 | 5.986892e+10 | 3.056683e+09 | 2.108105e+10 |
2017-09-30 | 23.069000 | 5.485090e+10 | -1.302605e+09 | -1.495390e+10 |
2017-12-31 | 27.828917 | 1.199402e+11 | 5.610649e+10 | 4.711828e+10 |
2016-03-31 | 14.935583 | -5.016827e+09 | 8.076258e+09 | 1.970677e+09 |
2016-06-30 | 13.704167 | -3.075231e+09 | 1.117917e+10 | -3.843394e+09 |
2016-09-30 | 14.698833 | -4.036353e+09 | 9.365956e+09 | -3.289650e+09 |
2016-12-31 | 15.888917 | -4.388740e+09 | 1.672073e+10 | 2.316428e+09 |
2017-03-31 | 15.712500 | -6.097973e+09 | 1.282599e+10 | -2.623242e+09 |
2017-06-30 | 19.197167 | -4.142437e+09 | 1.442046e+10 | -5.220753e+09 |
2017-09-30 | 23.743083 | -5.253224e+09 | 8.822691e+09 | -9.293062e+08 |
2017-12-31 | 34.003917 | 1.524061e+09 | 1.667456e+10 | 7.657516e+09 |
2016-03-31 | 6.492583 | -8.125639e+09 | -9.416483e+09 | -3.510938e+09 |
2016-06-30 | 6.177417 | -7.219796e+09 | -9.265356e+09 | -1.653201e+09 |
2016-09-30 | 6.598250 | -3.770571e+09 | -8.630082e+09 | 8.219842e+09 |
2016-12-31 | 6.704000 | 1.759500e+09 | -2.950616e+09 | -9.516879e+09 |
2017-03-31 | 6.803750 | -3.720857e+09 | -1.173234e+10 | -1.053979e+10 |
2017-06-30 | 8.113583 | -3.172705e+09 | -1.054898e+10 | -1.329641e+10 |
... | ... | ... | ... | ... |
2016-03-31 | 13.292000 | -2.818630e+10 | -2.436792e+09 | 1.406017e+09 |
2016-06-30 | 20.172750 | -2.810275e+10 | -2.391915e+09 | 1.709901e+09 |
2016-09-30 | 25.900667 | -2.797513e+10 | -2.236869e+09 | 1.536625e+09 |
2016-12-31 | 23.780000 | -2.778218e+10 | -2.204958e+09 | 2.243209e+09 |
2017-03-31 | 32.809833 | -2.751445e+10 | -2.033910e+09 | 1.228395e+09 |
2017-06-30 | 34.699167 | -2.705078e+10 | -1.988206e+09 | 8.466173e+08 |
2017-09-30 | 52.392000 | -2.657533e+10 | -1.913468e+09 | 6.215314e+08 |
2017-12-31 | 60.570167 | -2.531843e+10 | -1.325950e+09 | 4.386200e+08 |
2017-06-30 | 65.165108 | -2.599141e+10 | -2.074676e+09 | 1.930794e+09 |
2017-09-30 | 65.165108 | -2.530689e+10 | -1.819447e+09 | 1.289378e+09 |
2017-12-31 | 65.165108 | -2.510212e+10 | -2.150891e+09 | 1.954085e+09 |
2016-12-31 | 65.165108 | -2.115495e+10 | -3.952395e+09 | 3.753818e+08 |
2017-03-31 | 64.234083 | -2.144472e+10 | -4.788801e+09 | 6.927114e+08 |
2017-06-30 | 55.238250 | -2.138881e+10 | -3.759743e+09 | 1.103803e+09 |
2017-09-30 | 50.384417 | -2.091530e+10 | -3.646689e+09 | 5.286290e+08 |
2017-12-31 | 45.485250 | -2.015903e+10 | -3.260688e+09 | 3.607933e+08 |
2016-09-30 | 43.327667 | -2.857067e+10 | -2.954438e+09 | 1.579328e+09 |
2016-12-31 | 63.220000 | -2.853049e+10 | -2.924369e+09 | 1.590736e+09 |
2017-03-31 | 65.165108 | -2.847343e+10 | -2.948562e+09 | 1.515527e+09 |
2017-06-30 | 64.560333 | -2.838206e+10 | -2.950828e+09 | 1.658926e+09 |
2017-09-30 | 64.561333 | -2.820804e+10 | -2.949721e+09 | 1.584637e+09 |
2017-12-31 | 65.165108 | -2.824783e+10 | -3.016628e+09 | 1.447283e+09 |
2016-03-31 | 3.478917 | -2.579608e+10 | -3.756812e+09 | 1.366496e+09 |
2016-06-30 | 3.649667 | -2.584040e+10 | -3.792631e+09 | 1.373294e+09 |
2016-09-30 | 3.999250 | -2.574046e+10 | -3.694048e+09 | 1.427834e+09 |
2016-12-31 | 3.865833 | -2.401904e+10 | -2.023038e+09 | 2.925835e+09 |
2017-03-31 | 4.363417 | -2.228576e+10 | -3.958155e+08 | 2.024033e+09 |
2017-06-30 | 4.458667 | -2.252161e+10 | -1.105224e+08 | 2.731423e+09 |
2017-09-30 | 7.000000 | -2.172586e+10 | -3.580749e+08 | 2.694390e+09 |
2017-12-31 | 6.722417 | -2.055700e+10 | -5.614782e+08 | 3.061337e+09 |
2256 rows × 4 columns
data_pca
#df=data_pro
X2= data_pca.values[:, 1:]
Y2 =data_pca.values[:, 0]
X2.shape #划分 x和标签y
(2256, 3)
import numpy as np
import matplotlib.pyplot as plt
sampleRatio=0.2 #划分训练集和测试集各一半
m=len(X)
sampleBoundary=int(m*sampleRatio)
myshuffle=list(range(m)) #注意Python3中range()返回range对象而不是数组对象,要将其转为序列
np.random.shuffle(myshuffle) #shuffle()函数将序列内的元素全部随机排序
#分别取出训练集和测试集的数据
train_fea2= X2[myshuffle[sampleBoundary:]] #前一半数据集作为训练集
train_tar2= Y2[myshuffle[sampleBoundary:]]
test_fea2= X2[myshuffle[:sampleBoundary]] #后一半数据作为测试集
test_tar2= Y2[myshuffle[:sampleBoundary]]
train_fea2.shape
(1444, 3)
from sklearn import linear_model
#使用最小二乘线性回归进行拟合,导入相应的模块
lr=linear_model.LinearRegression()
lr.fit(train_fea2,train_tar2) #拟合
y_pred=lr.predict(test_fea2) #得到预测值集合y
plt.scatter(y_pred,test_tar2) #画出散点图,横轴是预测值,纵轴是真实值
plt.plot([y_pred.min(), y_pred.max()], [y_pred.min(), y_pred.max()], 'b',lw=5) #直线的起点为(y.min(),y.min()),终点是(y.max(),y.max())
plt.show()
coef=lr.coef_ #获得该回该方程的回归系数与截距
intercept=lr.intercept_
print("预测方程回归系数:",coef)
print("预测方程截距:",intercept)
score=lr.score(test_fea2,test_tar2) #对得到的模型打分
print("对该模型的评分是:%.5f" %score)
#---------------------
预测方程回归系数: [-4.16038761e-11 -7.75401816e-11 -8.45493194e-12] 预测方程截距: 17.425738170000557 对该模型的评分是:0.03062