繁簡切換您正在訪問的是FX168財經網,本網站所提供的內容及信息均遵守中華人民共和國香港特別行政區當地法律法規。

FX168财经网>人物频道>帖子

二:Keras深度学习CNN+LSTM预测黄金主力收盘价

作者/英雄就是我 2019-08-02 20:00 0 来源: FX168财经网人物频道
import pandas as pd
import time, datetime
df_data_5minute=pd.read_csv('黄金主力5分钟数据.csv')
'''
或者使用JQdata
from jqdatasdk import *
#jqdata的账号密码
auth('邮箱:', 'jiaohiabin@ruc.edu.cn')
df_data_5minute= get_price('AU9999.XSGE',   start_date='2016-01-01', end_date='2018-01-01', frequency='5m')
'''
df_data_5minute.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
Unnamed: 0 open close high low volume money
0 2016-01-04 09:05:00 226.70 226.65 226.85 226.45 5890.0 1.335146e+09
1 2016-01-04 09:10:00 226.75 226.50 226.75 226.40 2562.0 5.804133e+08
2 2016-01-04 09:15:00 226.45 226.45 226.60 226.40 1638.0 3.709666e+08
3 2016-01-04 09:20:00 226.45 226.25 226.50 226.20 3162.0 7.157891e+08
4 2016-01-04 09:25:00 226.25 226.25 226.30 226.20 1684.0 3.809907e+08
df_data_5minute
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
open close high low volume money
0 226.70 226.65 226.85 226.45 5890.0 1.335146e+09
1 226.75 226.50 226.75 226.40 2562.0 5.804133e+08
2 226.45 226.45 226.60 226.40 1638.0 3.709666e+08
3 226.45 226.25 226.50 226.20 3162.0 7.157891e+08
4 226.25 226.25 226.30 226.20 1684.0 3.809907e+08
5 226.25 226.30 226.35 226.20 922.0 2.086313e+08
6 226.30 226.35 226.40 226.20 2476.0 5.603541e+08
7 226.30 226.45 226.45 226.25 2516.0 5.695246e+08
8 226.45 226.35 226.45 226.30 1344.0 3.042327e+08
9 226.30 226.30 226.35 226.20 1414.0 3.199363e+08
10 226.35 226.45 226.50 226.30 1610.0 3.645328e+08
11 226.45 226.40 226.50 226.40 972.0 2.200957e+08
12 226.40 226.50 226.55 226.35 2004.0 4.538166e+08
13 226.50 226.45 226.55 226.40 780.0 1.766423e+08
14 226.45 226.45 226.50 226.40 1530.0 3.464690e+08
15 226.55 226.45 226.65 226.45 2564.0 5.807784e+08
16 226.45 226.50 226.55 226.45 900.0 2.038475e+08
17 226.55 226.70 226.80 226.50 3008.0 6.817039e+08
18 226.70 226.65 226.85 226.60 2510.0 5.691306e+08
19 226.65 226.60 226.65 226.60 930.0 2.107595e+08
20 226.65 226.75 226.75 226.60 1184.0 2.683818e+08
21 226.75 226.65 226.75 226.60 1044.0 2.366603e+08
22 226.65 226.60 226.70 226.60 342.0 7.751130e+07
23 226.60 226.60 226.65 226.55 640.0 1.450196e+08
24 226.60 226.65 226.70 226.60 502.0 1.137778e+08
25 226.65 226.95 226.95 226.65 3222.0 7.308042e+08
26 226.90 226.90 226.95 226.80 1472.0 3.339398e+08
27 227.10 227.25 227.25 227.00 4894.0 1.111496e+09
28 227.25 227.55 227.60 227.20 5338.0 1.214103e+09
29 227.60 227.75 228.00 227.50 8612.0 1.961599e+09
... ... ... ... ... ... ...
53280 278.05 277.95 278.05 277.90 448.0 1.245318e+08
53281 277.90 277.95 278.00 277.90 506.0 1.406423e+08
53282 277.95 277.95 278.00 277.95 180.0 5.003790e+07
53283 277.95 278.00 278.05 277.95 936.0 2.602273e+08
53284 278.05 277.90 278.05 277.90 942.0 2.618281e+08
53285 277.85 277.90 277.95 277.85 518.0 1.439454e+08
53286 277.95 277.95 277.95 277.90 614.0 1.706443e+08
53287 277.90 277.90 277.95 277.85 1046.0 2.906776e+08
53288 277.95 277.90 277.95 277.90 206.0 5.725350e+07
53289 277.90 277.90 277.95 277.85 740.0 2.056435e+08
53290 277.90 277.85 277.90 277.85 200.0 5.557570e+07
53291 277.90 277.90 277.95 277.85 756.0 2.100840e+08
53292 277.90 278.00 278.00 277.90 490.0 1.362097e+08
53293 278.00 278.05 278.15 278.00 768.0 2.135675e+08
53294 278.10 278.15 278.15 278.05 252.0 7.008070e+07
53295 278.10 278.05 278.10 278.00 800.0 2.224430e+08
53296 278.00 278.00 278.05 277.95 184.0 5.115390e+07
53297 278.00 277.95 278.00 277.90 474.0 1.317464e+08
53298 277.95 277.95 277.95 277.90 334.0 9.282880e+07
53299 277.95 277.90 277.95 277.90 332.0 9.226560e+07
53300 277.90 277.95 277.95 277.90 672.0 1.867720e+08
53301 277.90 277.85 277.95 277.85 994.0 2.762458e+08
53302 277.90 277.90 277.95 277.85 352.0 9.781830e+07
53303 277.90 277.80 277.95 277.80 784.0 2.178426e+08
53304 277.85 277.80 277.85 277.75 920.0 2.555711e+08
53305 277.80 277.80 277.85 277.75 606.0 1.683349e+08
53306 277.80 277.85 277.85 277.80 560.0 1.555840e+08
53307 277.85 277.85 277.90 277.80 802.0 2.228271e+08
53308 277.85 277.75 277.90 277.75 1236.0 3.433855e+08
53309 277.80 277.80 277.90 277.70 1790.0 4.972797e+08

53310 rows × 6 columns

df_data_5minute.drop('Unnamed: 0', axis=1, inplace=True)
df_data_5minute
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
open close high low volume money
0 226.70 226.65 226.85 226.45 5890.0 1.335146e+09
1 226.75 226.50 226.75 226.40 2562.0 5.804133e+08
2 226.45 226.45 226.60 226.40 1638.0 3.709666e+08
3 226.45 226.25 226.50 226.20 3162.0 7.157891e+08
4 226.25 226.25 226.30 226.20 1684.0 3.809907e+08
5 226.25 226.30 226.35 226.20 922.0 2.086313e+08
6 226.30 226.35 226.40 226.20 2476.0 5.603541e+08
7 226.30 226.45 226.45 226.25 2516.0 5.695246e+08
8 226.45 226.35 226.45 226.30 1344.0 3.042327e+08
9 226.30 226.30 226.35 226.20 1414.0 3.199363e+08
10 226.35 226.45 226.50 226.30 1610.0 3.645328e+08
11 226.45 226.40 226.50 226.40 972.0 2.200957e+08
12 226.40 226.50 226.55 226.35 2004.0 4.538166e+08
13 226.50 226.45 226.55 226.40 780.0 1.766423e+08
14 226.45 226.45 226.50 226.40 1530.0 3.464690e+08
15 226.55 226.45 226.65 226.45 2564.0 5.807784e+08
16 226.45 226.50 226.55 226.45 900.0 2.038475e+08
17 226.55 226.70 226.80 226.50 3008.0 6.817039e+08
18 226.70 226.65 226.85 226.60 2510.0 5.691306e+08
19 226.65 226.60 226.65 226.60 930.0 2.107595e+08
20 226.65 226.75 226.75 226.60 1184.0 2.683818e+08
21 226.75 226.65 226.75 226.60 1044.0 2.366603e+08
22 226.65 226.60 226.70 226.60 342.0 7.751130e+07
23 226.60 226.60 226.65 226.55 640.0 1.450196e+08
24 226.60 226.65 226.70 226.60 502.0 1.137778e+08
25 226.65 226.95 226.95 226.65 3222.0 7.308042e+08
26 226.90 226.90 226.95 226.80 1472.0 3.339398e+08
27 227.10 227.25 227.25 227.00 4894.0 1.111496e+09
28 227.25 227.55 227.60 227.20 5338.0 1.214103e+09
29 227.60 227.75 228.00 227.50 8612.0 1.961599e+09
... ... ... ... ... ... ...
53280 278.05 277.95 278.05 277.90 448.0 1.245318e+08
53281 277.90 277.95 278.00 277.90 506.0 1.406423e+08
53282 277.95 277.95 278.00 277.95 180.0 5.003790e+07
53283 277.95 278.00 278.05 277.95 936.0 2.602273e+08
53284 278.05 277.90 278.05 277.90 942.0 2.618281e+08
53285 277.85 277.90 277.95 277.85 518.0 1.439454e+08
53286 277.95 277.95 277.95 277.90 614.0 1.706443e+08
53287 277.90 277.90 277.95 277.85 1046.0 2.906776e+08
53288 277.95 277.90 277.95 277.90 206.0 5.725350e+07
53289 277.90 277.90 277.95 277.85 740.0 2.056435e+08
53290 277.90 277.85 277.90 277.85 200.0 5.557570e+07
53291 277.90 277.90 277.95 277.85 756.0 2.100840e+08
53292 277.90 278.00 278.00 277.90 490.0 1.362097e+08
53293 278.00 278.05 278.15 278.00 768.0 2.135675e+08
53294 278.10 278.15 278.15 278.05 252.0 7.008070e+07
53295 278.10 278.05 278.10 278.00 800.0 2.224430e+08
53296 278.00 278.00 278.05 277.95 184.0 5.115390e+07
53297 278.00 277.95 278.00 277.90 474.0 1.317464e+08
53298 277.95 277.95 277.95 277.90 334.0 9.282880e+07
53299 277.95 277.90 277.95 277.90 332.0 9.226560e+07
53300 277.90 277.95 277.95 277.90 672.0 1.867720e+08
53301 277.90 277.85 277.95 277.85 994.0 2.762458e+08
53302 277.90 277.90 277.95 277.85 352.0 9.781830e+07
53303 277.90 277.80 277.95 277.80 784.0 2.178426e+08
53304 277.85 277.80 277.85 277.75 920.0 2.555711e+08
53305 277.80 277.80 277.85 277.75 606.0 1.683349e+08
53306 277.80 277.85 277.85 277.80 560.0 1.555840e+08
53307 277.85 277.85 277.90 277.80 802.0 2.228271e+08
53308 277.85 277.75 277.90 277.75 1236.0 3.433855e+08
53309 277.80 277.80 277.90 277.70 1790.0 4.972797e+08

53310 rows × 6 columns

df=df_data_5minute
close = df['close']
df.drop(labels=['close'], axis=1,inplace = True)
df.insert(0, 'close', close)
df
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
close open high low volume money
0 226.65 226.70 226.85 226.45 5890.0 1.335146e+09
1 226.50 226.75 226.75 226.40 2562.0 5.804133e+08
2 226.45 226.45 226.60 226.40 1638.0 3.709666e+08
3 226.25 226.45 226.50 226.20 3162.0 7.157891e+08
4 226.25 226.25 226.30 226.20 1684.0 3.809907e+08
5 226.30 226.25 226.35 226.20 922.0 2.086313e+08
6 226.35 226.30 226.40 226.20 2476.0 5.603541e+08
7 226.45 226.30 226.45 226.25 2516.0 5.695246e+08
8 226.35 226.45 226.45 226.30 1344.0 3.042327e+08
9 226.30 226.30 226.35 226.20 1414.0 3.199363e+08
10 226.45 226.35 226.50 226.30 1610.0 3.645328e+08
11 226.40 226.45 226.50 226.40 972.0 2.200957e+08
12 226.50 226.40 226.55 226.35 2004.0 4.538166e+08
13 226.45 226.50 226.55 226.40 780.0 1.766423e+08
14 226.45 226.45 226.50 226.40 1530.0 3.464690e+08
15 226.45 226.55 226.65 226.45 2564.0 5.807784e+08
16 226.50 226.45 226.55 226.45 900.0 2.038475e+08
17 226.70 226.55 226.80 226.50 3008.0 6.817039e+08
18 226.65 226.70 226.85 226.60 2510.0 5.691306e+08
19 226.60 226.65 226.65 226.60 930.0 2.107595e+08
20 226.75 226.65 226.75 226.60 1184.0 2.683818e+08
21 226.65 226.75 226.75 226.60 1044.0 2.366603e+08
22 226.60 226.65 226.70 226.60 342.0 7.751130e+07
23 226.60 226.60 226.65 226.55 640.0 1.450196e+08
24 226.65 226.60 226.70 226.60 502.0 1.137778e+08
25 226.95 226.65 226.95 226.65 3222.0 7.308042e+08
26 226.90 226.90 226.95 226.80 1472.0 3.339398e+08
27 227.25 227.10 227.25 227.00 4894.0 1.111496e+09
28 227.55 227.25 227.60 227.20 5338.0 1.214103e+09
29 227.75 227.60 228.00 227.50 8612.0 1.961599e+09
... ... ... ... ... ... ...
53280 277.95 278.05 278.05 277.90 448.0 1.245318e+08
53281 277.95 277.90 278.00 277.90 506.0 1.406423e+08
53282 277.95 277.95 278.00 277.95 180.0 5.003790e+07
53283 278.00 277.95 278.05 277.95 936.0 2.602273e+08
53284 277.90 278.05 278.05 277.90 942.0 2.618281e+08
53285 277.90 277.85 277.95 277.85 518.0 1.439454e+08
53286 277.95 277.95 277.95 277.90 614.0 1.706443e+08
53287 277.90 277.90 277.95 277.85 1046.0 2.906776e+08
53288 277.90 277.95 277.95 277.90 206.0 5.725350e+07
53289 277.90 277.90 277.95 277.85 740.0 2.056435e+08
53290 277.85 277.90 277.90 277.85 200.0 5.557570e+07
53291 277.90 277.90 277.95 277.85 756.0 2.100840e+08
53292 278.00 277.90 278.00 277.90 490.0 1.362097e+08
53293 278.05 278.00 278.15 278.00 768.0 2.135675e+08
53294 278.15 278.10 278.15 278.05 252.0 7.008070e+07
53295 278.05 278.10 278.10 278.00 800.0 2.224430e+08
53296 278.00 278.00 278.05 277.95 184.0 5.115390e+07
53297 277.95 278.00 278.00 277.90 474.0 1.317464e+08
53298 277.95 277.95 277.95 277.90 334.0 9.282880e+07
53299 277.90 277.95 277.95 277.90 332.0 9.226560e+07
53300 277.95 277.90 277.95 277.90 672.0 1.867720e+08
53301 277.85 277.90 277.95 277.85 994.0 2.762458e+08
53302 277.90 277.90 277.95 277.85 352.0 9.781830e+07
53303 277.80 277.90 277.95 277.80 784.0 2.178426e+08
53304 277.80 277.85 277.85 277.75 920.0 2.555711e+08
53305 277.80 277.80 277.85 277.75 606.0 1.683349e+08
53306 277.85 277.80 277.85 277.80 560.0 1.555840e+08
53307 277.85 277.85 277.90 277.80 802.0 2.228271e+08
53308 277.75 277.85 277.90 277.75 1236.0 3.433855e+08
53309 277.80 277.80 277.90 277.70 1790.0 4.972797e+08

53310 rows × 6 columns

data_train =df.iloc[:int(df.shape[0] * 0.7), :]
data_test = df.iloc[int(df.shape[0] * 0.7):, :]
print(data_train.shape, data_test.shape)
(37317, 6) (15993, 6)
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
%matplotlib inline
from sklearn.preprocessing import MinMaxScaler
import time
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit(data_train)
MinMaxScaler(copy=True, feature_range=(-1, 1))
data_train = scaler.transform(data_train)
data_test = scaler.transform(data_test)
data_train
array([[-0.98877193, -0.98736842, -0.98459384, -0.99297259, -0.82504604,
        -0.85978547],
       [-0.99298246, -0.98596491, -0.98739496, -0.99437807, -0.92389948,
        -0.93904608],
       [-0.99438596, -0.99438596, -0.99159664, -0.99437807, -0.95134557,
        -0.96104178],
       ...,
       [ 0.61263158,  0.61824561,  0.61484594,  0.61349262, -0.90916652,
        -0.90885626],
       [ 0.61684211,  0.61403509,  0.61204482,  0.61630358, -0.94754352,
        -0.94737162],
       [ 0.6154386 ,  0.6154386 ,  0.61064426,  0.61349262, -0.94445435,
        -0.9442865 ]])
from keras.layers import Input, Dense, LSTM
from keras.models import Model
from keras.layers import *
from keras.models import *
from keras.optimizers import Adam

output_dim = 1
batch_size = 256
epochs = 60
seq_len = 5
hidden_size = 128


TIME_STEPS = 5
INPUT_DIM = 6

lstm_units = 64
X_train = np.array([data_train[i : i + seq_len, :] for i in range(data_train.shape[0] - seq_len)])
y_train = np.array([data_train[i + seq_len, 0] for i in range(data_train.shape[0]- seq_len)])
X_test = np.array([data_test[i : i + seq_len, :] for i in range(data_test.shape[0]- seq_len)])
y_test = np.array([data_test[i + seq_len, 0] for i in range(data_test.shape[0] - seq_len)])

print(X_train.shape, y_train.shape, X_test.shape, y_test.shape)
(37312, 5, 6) (37312,) (15988, 5, 6) (15988,)
inputs = Input(shape=(TIME_STEPS, INPUT_DIM))
#drop1 = Dropout(0.3)(inputs)

x = Conv1D(filters = 64, kernel_size = 1, activation = 'relu')(inputs)  #, padding = 'same'
#x = Conv1D(filters=128, kernel_size=5, activation='relu')(output1)#embedded_sequences
x = MaxPooling1D(pool_size = 5)(x)
x = Dropout(0.2)(x)

print(x.shape)
(?, 1, 64)
lstm_out = Bidirectional(LSTM(lstm_units, activation='relu'), name='bilstm')(x)
#lstm_out = LSTM(lstm_units,activation='relu')(x)
print(lstm_out.shape)
(?, 128)
output = Dense(1, activation='sigmoid')(lstm_out)
#output = Dense(10, activation='sigmoid')(drop2)

model = Model(inputs=inputs, outputs=output)
print(model.summary())
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_7 (InputLayer)         (None, 5, 6)              0         
_________________________________________________________________
conv1d_7 (Conv1D)            (None, 5, 64)             448       
_________________________________________________________________
max_pooling1d_7 (MaxPooling1 (None, 1, 64)             0         
_________________________________________________________________
dropout_10 (Dropout)         (None, 1, 64)             0         
_________________________________________________________________
bilstm (Bidirectional)       (None, 128)               66048     
_________________________________________________________________
dense_6 (Dense)              (None, 1)                 129       
=================================================================
Total params: 66,625
Trainable params: 66,625
Non-trainable params: 0
_________________________________________________________________
None
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, shuffle=False)
y_pred = model.predict(X_test)
print('MSE Train loss:', model.evaluate(X_train, y_train, batch_size=batch_size))
print('MSE Test loss:', model.evaluate(X_test, y_test, batch_size=batch_size))
plt.plot(y_test, label='test')
plt.plot(y_pred, label='pred')
plt.legend()
plt.show()
Epoch 1/60
37312/37312 [==============================] - 4s 106us/step - loss: 0.1970
Epoch 2/60
37312/37312 [==============================] - 2s 43us/step - loss: 0.0618
Epoch 3/60
37312/37312 [==============================] - 2s 45us/step - loss: 0.0438
Epoch 4/60
37312/37312 [==============================] - 2s 48us/step - loss: 0.0434
Epoch 5/60
37312/37312 [==============================] - 1s 40us/step - loss: 0.0432
Epoch 6/60
37312/37312 [==============================] - 2s 43us/step - loss: 0.0429
Epoch 7/60
37312/37312 [==============================] - 1s 35us/step - loss: 0.0427
Epoch 8/60
37312/37312 [==============================] - 1s 33us/step - loss: 0.0425
Epoch 9/60
37312/37312 [==============================] - 1s 33us/step - loss: 0.0424
Epoch 10/60
37312/37312 [==============================] - 2s 49us/step - loss: 0.0422
Epoch 11/60
37312/37312 [==============================] - 1s 34us/step - loss: 0.0421
Epoch 12/60
37312/37312 [==============================] - 1s 32us/step - loss: 0.0419
Epoch 13/60
37312/37312 [==============================] - 1s 36us/step - loss: 0.0418
Epoch 14/60
37312/37312 [==============================] - 1s 37us/step - loss: 0.0417
Epoch 15/60
37312/37312 [==============================] - 1s 32us/step - loss: 0.0417
Epoch 16/60
37312/37312 [==============================] - 1s 32us/step - loss: 0.0416
Epoch 17/60
37312/37312 [==============================] - 1s 37us/step - loss: 0.0416
Epoch 18/60
37312/37312 [==============================] - 1s 36us/step - loss: 0.0415
Epoch 19/60
37312/37312 [==============================] - 1s 32us/step - loss: 0.0414
Epoch 20/60
37312/37312 [==============================] - 1s 32us/step - loss: 0.0414
Epoch 21/60
37312/37312 [==============================] - 1s 38us/step - loss: 0.0414
Epoch 22/60
37312/37312 [==============================] - 1s 36us/step - loss: 0.0414
Epoch 23/60
37312/37312 [==============================] - 1s 32us/step - loss: 0.0414
Epoch 24/60
37312/37312 [==============================] - 1s 32us/step - loss: 0.0414
Epoch 25/60
37312/37312 [==============================] - 1s 38us/step - loss: 0.0414
Epoch 26/60
37312/37312 [==============================] - 1s 37us/step - loss: 0.0414
Epoch 27/60
37312/37312 [==============================] - 1s 33us/step - loss: 0.0414
Epoch 28/60
37312/37312 [==============================] - 1s 36us/step - loss: 0.0414
Epoch 29/60
37312/37312 [==============================] - 1s 38us/step - loss: 0.0414
Epoch 30/60
37312/37312 [==============================] - 1s 35us/step - loss: 0.0413
Epoch 31/60
37312/37312 [==============================] - 1s 33us/step - loss: 0.0413
Epoch 32/60
37312/37312 [==============================] - 1s 36us/step - loss: 0.0413
Epoch 33/60
37312/37312 [==============================] - 2s 44us/step - loss: 0.0413
Epoch 34/60
37312/37312 [==============================] - 2s 41us/step - loss: 0.0413
Epoch 35/60
37312/37312 [==============================] - 1s 34us/step - loss: 0.0414
Epoch 36/60
37312/37312 [==============================] - 1s 39us/step - loss: 0.0413
Epoch 37/60
37312/37312 [==============================] - 1s 36us/step - loss: 0.0412
Epoch 38/60
37312/37312 [==============================] - 1s 32us/step - loss: 0.0412
Epoch 39/60
37312/37312 [==============================] - 1s 35us/step - loss: 0.0412
Epoch 40/60
37312/37312 [==============================] - 1s 39us/step - loss: 0.0412
Epoch 41/60
37312/37312 [==============================] - 1s 34us/step - loss: 0.0413
Epoch 42/60
37312/37312 [==============================] - 1s 33us/step - loss: 0.0412
Epoch 43/60
37312/37312 [==============================] - 1s 37us/step - loss: 0.0412
Epoch 44/60
37312/37312 [==============================] - 1s 38us/step - loss: 0.0412
Epoch 45/60
37312/37312 [==============================] - 1s 33us/step - loss: 0.0412
Epoch 46/60
37312/37312 [==============================] - 1s 34us/step - loss: 0.0411
Epoch 47/60
37312/37312 [==============================] - 1s 39us/step - loss: 0.0412
Epoch 48/60
37312/37312 [==============================] - 1s 38us/step - loss: 0.0411
Epoch 49/60
37312/37312 [==============================] - 1s 33us/step - loss: 0.0412
Epoch 50/60
37312/37312 [==============================] - 1s 37us/step - loss: 0.0411
Epoch 51/60
37312/37312 [==============================] - 2s 43us/step - loss: 0.0411
Epoch 52/60
37312/37312 [==============================] - 1s 37us/step - loss: 0.0411
Epoch 53/60
37312/37312 [==============================] - 1s 33us/step - loss: 0.0412
Epoch 54/60
37312/37312 [==============================] - 1s 37us/step - loss: 0.0410
Epoch 55/60
37312/37312 [==============================] - 1s 39us/step - loss: 0.0411
Epoch 56/60
37312/37312 [==============================] - 1s 34us/step - loss: 0.0411
Epoch 57/60
37312/37312 [==============================] - 1s 33us/step - loss: 0.0411
Epoch 58/60
37312/37312 [==============================] - 2s 47us/step - loss: 0.0410
Epoch 59/60
37312/37312 [==============================] - 2s 41us/step - loss: 0.0411
Epoch 60/60
37312/37312 [==============================] - 1s 35us/step - loss: 0.0410
37312/37312 [==============================] - 1s 24us/step
MSE Train loss: 0.041352386607933875
15988/15988 [==============================] - 0s 15us/step
MSE Test loss: 0.0003156892797136216

随着训轮数(epoch)的增加,误差(loss)不断减小 loss: 0.0410左右

 
 
分享到:
举报财经168客户端下载

全部回复

0/140

投稿 您想发表你的观点和看法?

更多人气分析师

  • 张亦巧

    人气2184文章4145粉丝45

    暂无个人简介信息

  • 梁孟梵

    人气2176文章3177粉丝39

    qq:2294906466 了解群指导添加微信mfmacd

  • 指导老师

    人气1864文章4423粉丝52

    暂无个人简介信息

  • 李冉晴

    人气2320文章3821粉丝34

    李冉晴,专业现贷实盘分析师。

  • 王启蒙现货黄金

    人气296文章3135粉丝8

    本人做分析师以来,并专注于贵金属投资市场,尤其是在现货黄金...

  • 张迎妤

    人气1896文章3305粉丝34

    个人专注于行情技术分析,消息面解读剖析,给予您第一时间方向...

  • 金泰铬J

    人气2328文章3925粉丝51

    投资问答解咨询金泰铬V/信tgtg67即可获取每日的实时资讯、行情...

  • 金算盘

    人气2696文章7761粉丝125

    高级分析师,混过名校,厮杀于股市和期货、证券市场多年,专注...

  • 金帝财神

    人气4760文章8329粉丝119

    本文由资深分析师金帝财神微信:934295330,指导黄金,白银,...

FX168财经

FX168财经学院

FX168财经

FX168北美