利用pandas的resample方法,生成周k线数据:
- 周线数据以每周的第一个交易日,日期为周K线索引;
-取每自然周的交易日的第一交易日开盘价为周开盘价;
-周内最后一个交易日的收盘价为收盘价;
-周内最高价为最高价;
-周内最低价为最低价;
-成交量和成交额取和值。
注意:
研究里有2个版本的内核,python2和python 2(PacVer 2.0)
根据打印pandas的版本,发现有差异。python2的pandas是0.16的,而python 2(PacVer 2.0)的是0.20的。高版本的pandas在实现上语法更为简洁一些。
其实为了加快运行速度,这类数据反复运算消耗资源,我还是建议聚宽方面,把周、月、季、年 K线数据生成好,用户使用时从数据库直接查询提供,比放dataFrame里来回计算要节约资源的多。
周线是最麻烦的。月线、季线、年线就简单的多了。等到都做完,封装成方法之后,我会共享在函数库中,便于使用。或者有哪位兄弟比较有时间,抢先一步分享函数,个人也拿来主义用用。
利用日线生成周K线数据¶
利用pandas的resample方法,生成周k线数据。周线数据以每周的第一个交易日,日期为周K线索引。取每自然周的交易日的第一交易日开盘价为周开盘价,周内最后一个交易日的收盘价为收盘价,周内最高价为最高价,周内最低价为最低价,成交量和成交额取和值。 研究里有2个版本的内核,python2和python 2(PacVer 2.0) 根据打印pandas的版本,发现有差异。python2的pandas是0.16的,而python 2(PacVer 2.0)的是0.20的。高版本的pandas在实现上语法更为简洁一些。下面请看代码:
import pandas as pd
print pd.__version__
#新老版本pandas都取示例数据放在df对象里,随便选了个600030作为标的。这里要注意,skip_paused=True要设置,以免影响到索引值。
#赋权根据自己的要求来设置,如果要产生相应赋权的周线,就得让日线先在对应的赋权状态
df = get_price('600030.XSHG', start_date='2017-01-01', end_date='2018-01-25', frequency='1d',skip_paused=True,fq='pre')
#dp = get_price(['000300.XSHG','600030.XSHG'], start_date='2018-01-01', end_date='2018-01-25', frequency='1d',skip_paused=False,fq='pre')
#增加一列date列,用于生成周线的日期索引
df['date']=df.index
#打印一下信息,看看
#dp['close'][:2]
df
0.20.3
open | close | high | low | volume | money | date | |
---|---|---|---|---|---|---|---|
2017-01-03 | 15.75 | 15.86 | 15.90 | 15.71 | 63620068.0 | 1.007140e+09 | 2017-01-03 |
2017-01-04 | 15.85 | 15.89 | 15.93 | 15.80 | 52760756.0 | 8.375141e+08 | 2017-01-04 |
2017-01-05 | 15.90 | 15.82 | 15.92 | 15.79 | 48870988.0 | 7.740279e+08 | 2017-01-05 |
2017-01-06 | 15.84 | 15.68 | 15.84 | 15.66 | 52752831.0 | 8.293983e+08 | 2017-01-06 |
2017-01-09 | 15.68 | 15.74 | 15.79 | 15.64 | 40680379.0 | 6.395246e+08 | 2017-01-09 |
2017-01-10 | 15.70 | 15.78 | 15.88 | 15.69 | 46358711.0 | 7.326209e+08 | 2017-01-10 |
2017-01-11 | 15.81 | 15.77 | 15.90 | 15.77 | 40718031.0 | 6.445079e+08 | 2017-01-11 |
2017-01-12 | 15.78 | 15.82 | 15.94 | 15.76 | 57138829.0 | 9.063276e+08 | 2017-01-12 |
2017-01-13 | 15.81 | 15.88 | 16.01 | 15.69 | 84259946.0 | 1.337354e+09 | 2017-01-13 |
2017-01-16 | 15.85 | 16.02 | 16.09 | 15.69 | 175717493.0 | 2.795619e+09 | 2017-01-16 |
2017-01-17 | 15.92 | 15.92 | 15.98 | 15.79 | 46520006.0 | 7.391539e+08 | 2017-01-17 |
2017-01-18 | 15.88 | 15.93 | 16.09 | 15.85 | 49059293.0 | 7.838194e+08 | 2017-01-18 |
2017-01-19 | 15.90 | 15.93 | 16.05 | 15.90 | 40678397.0 | 6.501369e+08 | 2017-01-19 |
2017-01-20 | 15.94 | 16.07 | 16.09 | 15.91 | 64490763.0 | 1.034924e+09 | 2017-01-20 |
2017-01-23 | 16.06 | 16.10 | 16.25 | 16.06 | 48499782.0 | 7.830028e+08 | 2017-01-23 |
2017-01-24 | 16.12 | 16.04 | 16.12 | 16.01 | 41086050.0 | 6.594562e+08 | 2017-01-24 |
2017-01-25 | 16.04 | 16.05 | 16.05 | 15.98 | 32898172.0 | 5.270127e+08 | 2017-01-25 |
2017-01-26 | 16.09 | 16.14 | 16.22 | 16.09 | 47810174.0 | 7.729048e+08 | 2017-01-26 |
2017-02-03 | 16.21 | 16.03 | 16.21 | 16.02 | 27857273.0 | 4.483021e+08 | 2017-02-03 |
2017-02-06 | 16.07 | 16.00 | 16.09 | 15.92 | 45739900.0 | 7.311071e+08 | 2017-02-06 |
2017-02-07 | 15.99 | 15.96 | 16.02 | 15.90 | 32460931.0 | 5.177569e+08 | 2017-02-07 |
2017-02-08 | 15.95 | 16.18 | 16.26 | 15.86 | 81693977.0 | 1.312890e+09 | 2017-02-08 |
2017-02-09 | 16.13 | 16.17 | 16.32 | 16.11 | 66131622.0 | 1.071782e+09 | 2017-02-09 |
2017-02-10 | 16.17 | 16.33 | 16.41 | 16.17 | 81970312.0 | 1.335786e+09 | 2017-02-10 |
2017-02-13 | 16.35 | 16.35 | 16.48 | 16.31 | 76536506.0 | 1.255339e+09 | 2017-02-13 |
2017-02-14 | 16.40 | 16.30 | 16.46 | 16.23 | 61805616.0 | 1.009170e+09 | 2017-02-14 |
2017-02-15 | 16.29 | 16.22 | 16.42 | 16.19 | 61407812.0 | 1.001180e+09 | 2017-02-15 |
2017-02-16 | 16.22 | 16.37 | 16.39 | 16.17 | 68247581.0 | 1.112894e+09 | 2017-02-16 |
2017-02-17 | 16.42 | 16.33 | 16.73 | 16.28 | 123624739.0 | 2.043051e+09 | 2017-02-17 |
2017-02-20 | 16.33 | 16.53 | 16.57 | 16.24 | 96248504.0 | 1.575748e+09 | 2017-02-20 |
... | ... | ... | ... | ... | ... | ... | ... |
2017-12-14 | 18.41 | 18.14 | 18.45 | 18.06 | 76469313.0 | 1.391583e+09 | 2017-12-14 |
2017-12-15 | 18.17 | 17.95 | 18.23 | 17.92 | 77736629.0 | 1.403545e+09 | 2017-12-15 |
2017-12-18 | 17.95 | 18.03 | 18.23 | 17.92 | 58531399.0 | 1.055856e+09 | 2017-12-18 |
2017-12-19 | 18.03 | 18.27 | 18.29 | 17.98 | 79928721.0 | 1.452203e+09 | 2017-12-19 |
2017-12-20 | 18.26 | 17.87 | 18.26 | 17.86 | 87315687.0 | 1.571652e+09 | 2017-12-20 |
2017-12-21 | 17.84 | 18.19 | 18.33 | 17.78 | 113695808.0 | 2.063078e+09 | 2017-12-21 |
2017-12-22 | 18.15 | 18.19 | 18.33 | 18.13 | 52847665.0 | 9.629686e+08 | 2017-12-22 |
2017-12-25 | 18.23 | 18.06 | 18.35 | 18.00 | 66201336.0 | 1.204270e+09 | 2017-12-25 |
2017-12-26 | 18.01 | 18.41 | 18.43 | 17.95 | 99335812.0 | 1.817544e+09 | 2017-12-26 |
2017-12-27 | 18.35 | 18.10 | 18.40 | 18.05 | 78546460.0 | 1.431445e+09 | 2017-12-27 |
2017-12-28 | 18.06 | 18.12 | 18.45 | 17.98 | 102101410.0 | 1.864401e+09 | 2017-12-28 |
2017-12-29 | 18.12 | 18.10 | 18.26 | 18.00 | 64352159.0 | 1.165504e+09 | 2017-12-29 |
2018-01-02 | 18.13 | 18.44 | 18.52 | 18.13 | 139328457.0 | 2.562810e+09 | 2018-01-02 |
2018-01-03 | 18.36 | 18.61 | 18.85 | 18.35 | 151966900.0 | 2.831080e+09 | 2018-01-03 |
2018-01-04 | 18.64 | 18.67 | 18.84 | 18.47 | 114791454.0 | 2.141315e+09 | 2018-01-04 |
2018-01-05 | 18.68 | 18.88 | 19.09 | 18.59 | 172884868.0 | 3.271662e+09 | 2018-01-05 |
2018-01-08 | 19.00 | 19.54 | 19.80 | 18.91 | 248970642.0 | 4.827830e+09 | 2018-01-08 |
2018-01-09 | 19.55 | 19.44 | 19.87 | 19.28 | 143919389.0 | 2.805148e+09 | 2018-01-09 |
2018-01-10 | 19.47 | 19.61 | 19.74 | 19.23 | 150258482.0 | 2.923746e+09 | 2018-01-10 |
2018-01-11 | 19.46 | 19.28 | 19.55 | 19.12 | 113379540.0 | 2.185830e+09 | 2018-01-11 |
2018-01-12 | 19.25 | 19.33 | 19.58 | 19.12 | 104603804.0 | 2.023121e+09 | 2018-01-12 |
2018-01-15 | 19.25 | 19.45 | 19.69 | 18.98 | 224135432.0 | 4.355326e+09 | 2018-01-15 |
2018-01-16 | 19.26 | 20.25 | 20.37 | 19.19 | 233073315.0 | 4.587774e+09 | 2018-01-16 |
2018-01-17 | 20.50 | 20.94 | 21.89 | 20.50 | 497887681.0 | 1.051009e+10 | 2018-01-17 |
2018-01-18 | 21.15 | 21.41 | 21.64 | 20.90 | 295669219.0 | 6.301946e+09 | 2018-01-18 |
2018-01-19 | 21.36 | 21.29 | 21.85 | 20.92 | 363017665.0 | 7.792348e+09 | 2018-01-19 |
2018-01-22 | 21.10 | 21.20 | 21.44 | 20.94 | 180999744.0 | 3.833396e+09 | 2018-01-22 |
2018-01-23 | 21.37 | 21.21 | 21.86 | 20.90 | 335664503.0 | 7.140624e+09 | 2018-01-23 |
2018-01-24 | 21.40 | 22.92 | 22.95 | 21.15 | 507088583.0 | 1.120049e+10 | 2018-01-24 |
2018-01-25 | 22.50 | 22.33 | 22.85 | 22.24 | 317331694.0 | 7.162054e+09 | 2018-01-25 |
262 rows × 7 columns
#新版本内核(pandas 0.20)实现方式¶
#直接使用resample方法搞定
df2=df.resample('W').agg({'open': 'first',
'close': 'last',
'high': 'max',
'low': 'min',
'money':'sum',
'volume':'sum',
'date':'first'})
#主要是让索引使用我们定义的每周第一个交易日,而不是星期日
#把索引的别名删了,保持数据视图一致性
df2=df2[df2['open'].notnull()]
df2.reset_index(inplace=True)
df2.set_index('date',inplace=True)
del df2['index']
del df2.index.name
#打印信息
df2
volume | money | high | low | close | open | |
---|---|---|---|---|---|---|
2017-01-03 | 2.180046e+08 | 3.448080e+09 | 15.93 | 15.66 | 15.68 | 15.75 |
2017-01-09 | 2.691559e+08 | 4.260335e+09 | 16.01 | 15.64 | 15.88 | 15.68 |
2017-01-16 | 3.764660e+08 | 6.003653e+09 | 16.09 | 15.69 | 16.07 | 15.85 |
2017-01-23 | 1.702942e+08 | 2.742377e+09 | 16.25 | 15.98 | 16.14 | 16.06 |
2017-02-03 | 2.785727e+07 | 4.483021e+08 | 16.21 | 16.02 | 16.03 | 16.21 |
2017-02-06 | 3.079967e+08 | 4.969322e+09 | 16.41 | 15.86 | 16.33 | 16.07 |
2017-02-13 | 3.916223e+08 | 6.421635e+09 | 16.73 | 16.17 | 16.33 | 16.35 |
2017-02-20 | 3.584853e+08 | 5.891984e+09 | 16.75 | 16.24 | 16.37 | 16.33 |
2017-02-27 | 2.598450e+08 | 4.206835e+09 | 16.42 | 15.95 | 16.03 | 16.31 |
2017-03-06 | 1.915477e+08 | 3.067753e+09 | 16.13 | 15.89 | 15.90 | 16.00 |
2017-03-13 | 2.834511e+08 | 4.556086e+09 | 16.30 | 15.79 | 15.97 | 15.90 |
2017-03-20 | 2.823598e+08 | 4.477019e+09 | 16.03 | 15.70 | 15.95 | 16.02 |
2017-03-27 | 2.235308e+08 | 3.535581e+09 | 16.05 | 15.66 | 15.78 | 15.92 |
2017-04-05 | 1.547144e+08 | 2.462549e+09 | 15.99 | 15.79 | 15.94 | 15.80 |
2017-04-10 | 3.002497e+08 | 4.785690e+09 | 16.15 | 15.73 | 15.85 | 15.93 |
2017-04-17 | 2.247704e+08 | 3.537721e+09 | 15.92 | 15.53 | 15.91 | 15.78 |
2017-04-24 | 2.595218e+08 | 4.117886e+09 | 16.00 | 15.71 | 15.90 | 15.87 |
2017-05-02 | 2.466684e+08 | 3.839831e+09 | 15.92 | 15.22 | 15.45 | 15.91 |
2017-05-08 | 2.271525e+08 | 3.464628e+09 | 15.48 | 14.94 | 15.33 | 15.30 |
2017-05-15 | 2.160621e+08 | 3.349251e+09 | 15.71 | 15.35 | 15.39 | 15.35 |
2017-05-22 | 4.229663e+08 | 6.686568e+09 | 16.34 | 15.16 | 16.05 | 15.39 |
2017-05-31 | 1.971193e+08 | 3.177974e+09 | 16.41 | 15.94 | 16.04 | 16.18 |
2017-06-05 | 3.407556e+08 | 5.479243e+09 | 16.40 | 15.80 | 16.23 | 16.02 |
2017-06-12 | 2.635834e+08 | 4.244843e+09 | 16.38 | 15.95 | 15.97 | 16.17 |
2017-06-19 | 5.573577e+08 | 9.188684e+09 | 16.83 | 15.91 | 16.59 | 15.92 |
2017-06-26 | 5.439984e+08 | 9.136007e+09 | 17.05 | 16.47 | 16.67 | 16.59 |
2017-07-03 | 3.841730e+08 | 6.322371e+09 | 16.70 | 16.26 | 16.60 | 16.65 |
2017-07-10 | 6.843106e+08 | 1.157603e+10 | 17.17 | 16.56 | 17.02 | 16.58 |
2017-07-17 | 7.973258e+08 | 1.352791e+10 | 17.46 | 16.30 | 17.16 | 16.96 |
2017-07-24 | 4.537773e+08 | 7.752429e+09 | 17.32 | 16.85 | 16.92 | 17.13 |
2017-07-31 | 6.463520e+08 | 1.114122e+10 | 17.49 | 16.85 | 17.20 | 16.91 |
2017-08-07 | 4.882033e+08 | 8.225036e+09 | 17.16 | 16.50 | 16.52 | 17.10 |
2017-08-14 | 2.849387e+08 | 4.755836e+09 | 16.84 | 16.41 | 16.70 | 16.57 |
2017-08-21 | 3.811794e+08 | 6.435678e+09 | 17.15 | 16.60 | 17.14 | 16.70 |
2017-08-28 | 1.026149e+09 | 1.861162e+10 | 18.52 | 17.27 | 18.30 | 17.31 |
2017-09-04 | 4.464087e+08 | 8.072975e+09 | 18.35 | 17.72 | 17.77 | 18.27 |
2017-09-11 | 4.189278e+08 | 7.524671e+09 | 18.22 | 17.66 | 18.03 | 17.70 |
2017-09-18 | 5.045833e+08 | 9.190243e+09 | 18.48 | 17.81 | 18.14 | 18.08 |
2017-09-25 | 3.134206e+08 | 5.670006e+09 | 18.35 | 17.89 | 18.19 | 18.10 |
2017-10-09 | 3.703520e+08 | 6.728820e+09 | 18.76 | 17.92 | 18.00 | 18.64 |
2017-10-16 | 3.198862e+08 | 5.739497e+09 | 18.23 | 17.68 | 17.78 | 18.00 |
2017-10-23 | 2.746486e+08 | 4.889915e+09 | 18.05 | 17.53 | 17.86 | 17.79 |
2017-10-30 | 3.877810e+08 | 6.703056e+09 | 17.83 | 16.94 | 17.27 | 17.80 |
2017-11-06 | 7.081138e+08 | 1.274872e+10 | 18.52 | 16.99 | 18.39 | 17.11 |
2017-11-13 | 6.528992e+08 | 1.185311e+10 | 18.61 | 17.77 | 18.30 | 18.37 |
2017-11-20 | 1.471590e+09 | 2.809600e+10 | 19.95 | 17.40 | 19.01 | 18.15 |
2017-11-27 | 9.140774e+08 | 1.745698e+10 | 19.90 | 18.50 | 18.94 | 18.89 |
2017-12-04 | 7.204366e+08 | 1.367074e+10 | 19.45 | 18.40 | 18.51 | 18.80 |
2017-12-11 | 4.084757e+08 | 7.500015e+09 | 18.78 | 17.92 | 17.95 | 18.46 |
2017-12-18 | 3.923193e+08 | 7.105757e+09 | 18.33 | 17.78 | 18.19 | 17.95 |
2017-12-25 | 4.105372e+08 | 7.483164e+09 | 18.45 | 17.95 | 18.10 | 18.23 |
2018-01-02 | 5.789717e+08 | 1.080687e+10 | 19.09 | 18.13 | 18.88 | 18.13 |
2018-01-08 | 7.611319e+08 | 1.476568e+10 | 19.87 | 18.91 | 19.33 | 19.00 |
2018-01-15 | 1.613783e+09 | 3.354749e+10 | 21.89 | 18.98 | 21.29 | 19.25 |
2018-01-22 | 1.341085e+09 | 2.933657e+10 | 22.95 | 20.90 | 22.33 | 21.10 |
#老版本内核(pandas 0.16,实际上0.18以下都得这样写)实现¶
#以下的代码大部分从网上复制,并且在编写过程中,得到简书“邢不行”的微信协助。感谢邢不行量化的指点。
#so不更改他的原始变量名称体系和大部分注解
period_type = 'W'
#进行转换,周线的每个变量都等于那一周中最后一个交易日的变量值
period_stock_data = df.resample('W',how='last')
#周线的open等于那一周中第一个交易日的open
period_stock_data['open'] = df['open'].resample(period_type,how='first')
#周线的high等于那一周中的high的最大值
period_stock_data['high'] = df['high'].resample(period_type,how='max')
#周线的low等于那一周中的low的最大值
period_stock_data['low'] = df['low'].resample(period_type,how='min')
#周线的volume和money等于那一周中volume和money各自的和
period_stock_data['volume'] = df['volume'].resample(period_type,how='sum')
period_stock_data['money'] = df['money'].resample(period_type,how='sum')
#这里给新数据集增加一个index字段,对应原始数据的date字段,并取每周的第一个交易日
period_stock_data['date']=df['date'].resample(period_type,how='first')
#股票在有些周一天都没有交易,将这些周去除。注意:这里邢不行的代码中用的股票的code,我这里只针对单只股票,所以随便选了个字段
#没有交易的周所有字段都是Nan
period_stock_data = period_stock_data[period_stock_data['open'].notnull()]
#重整索引
period_stock_data.reset_index(inplace=True)
#设置每周第一个交易日的日期为索引
period_stock_data.set_index('date',inplace=True)
#删除索引的别名,不然显示会乖乖的,感觉多了一行空数据似的
del period_stock_data.index.name
#把原始数据集带过来的index列删掉
del period_stock_data['index']
#打印【和分析家、飞狐一致的周K数据就出来了】
period_stock_data
/opt/conda/envs/python2new/lib/python2.7/site-packages/ipykernel_launcher.py:5: FutureWarning: how in .resample() is deprecated the new syntax is .resample(...).last() """ /opt/conda/envs/python2new/lib/python2.7/site-packages/ipykernel_launcher.py:7: FutureWarning: how in .resample() is deprecated the new syntax is .resample(...).first() import sys /opt/conda/envs/python2new/lib/python2.7/site-packages/ipykernel_launcher.py:9: FutureWarning: how in .resample() is deprecated the new syntax is .resample(...).max() if __name__ == '__main__': /opt/conda/envs/python2new/lib/python2.7/site-packages/ipykernel_launcher.py:11: FutureWarning: how in .resample() is deprecated the new syntax is .resample(...).min() # This is added back by InteractiveShellApp.init_path() /opt/conda/envs/python2new/lib/python2.7/site-packages/ipykernel_launcher.py:13: FutureWarning: how in .resample() is deprecated the new syntax is .resample(...).sum() del sys.path[0] /opt/conda/envs/python2new/lib/python2.7/site-packages/ipykernel_launcher.py:14: FutureWarning: how in .resample() is deprecated the new syntax is .resample(...).sum() /opt/conda/envs/python2new/lib/python2.7/site-packages/ipykernel_launcher.py:17: FutureWarning: how in .resample() is deprecated the new syntax is .resample(...).first()
open | close | high | low | volume | money | |
---|---|---|---|---|---|---|
2017-01-03 | 15.75 | 15.68 | 15.93 | 15.66 | 2.180046e+08 | 3.448080e+09 |
2017-01-09 | 15.68 | 15.88 | 16.01 | 15.64 | 2.691559e+08 | 4.260335e+09 |
2017-01-16 | 15.85 | 16.07 | 16.09 | 15.69 | 3.764660e+08 | 6.003653e+09 |
2017-01-23 | 16.06 | 16.14 | 16.25 | 15.98 | 1.702942e+08 | 2.742377e+09 |
2017-02-03 | 16.21 | 16.03 | 16.21 | 16.02 | 2.785727e+07 | 4.483021e+08 |
2017-02-06 | 16.07 | 16.33 | 16.41 | 15.86 | 3.079967e+08 | 4.969322e+09 |
2017-02-13 | 16.35 | 16.33 | 16.73 | 16.17 | 3.916223e+08 | 6.421635e+09 |
2017-02-20 | 16.33 | 16.37 | 16.75 | 16.24 | 3.584853e+08 | 5.891984e+09 |
2017-02-27 | 16.31 | 16.03 | 16.42 | 15.95 | 2.598450e+08 | 4.206835e+09 |
2017-03-06 | 16.00 | 15.90 | 16.13 | 15.89 | 1.915477e+08 | 3.067753e+09 |
2017-03-13 | 15.90 | 15.97 | 16.30 | 15.79 | 2.834511e+08 | 4.556086e+09 |
2017-03-20 | 16.02 | 15.95 | 16.03 | 15.70 | 2.823598e+08 | 4.477019e+09 |
2017-03-27 | 15.92 | 15.78 | 16.05 | 15.66 | 2.235308e+08 | 3.535581e+09 |
2017-04-05 | 15.80 | 15.94 | 15.99 | 15.79 | 1.547144e+08 | 2.462549e+09 |
2017-04-10 | 15.93 | 15.85 | 16.15 | 15.73 | 3.002497e+08 | 4.785690e+09 |
2017-04-17 | 15.78 | 15.91 | 15.92 | 15.53 | 2.247704e+08 | 3.537721e+09 |
2017-04-24 | 15.87 | 15.90 | 16.00 | 15.71 | 2.595218e+08 | 4.117886e+09 |
2017-05-02 | 15.91 | 15.45 | 15.92 | 15.22 | 2.466684e+08 | 3.839831e+09 |
2017-05-08 | 15.30 | 15.33 | 15.48 | 14.94 | 2.271525e+08 | 3.464628e+09 |
2017-05-15 | 15.35 | 15.39 | 15.71 | 15.35 | 2.160621e+08 | 3.349251e+09 |
2017-05-22 | 15.39 | 16.05 | 16.34 | 15.16 | 4.229663e+08 | 6.686568e+09 |
2017-05-31 | 16.18 | 16.04 | 16.41 | 15.94 | 1.971193e+08 | 3.177974e+09 |
2017-06-05 | 16.02 | 16.23 | 16.40 | 15.80 | 3.407556e+08 | 5.479243e+09 |
2017-06-12 | 16.17 | 15.97 | 16.38 | 15.95 | 2.635834e+08 | 4.244843e+09 |
2017-06-19 | 15.92 | 16.59 | 16.83 | 15.91 | 5.573577e+08 | 9.188684e+09 |
2017-06-26 | 16.59 | 16.67 | 17.05 | 16.47 | 5.439984e+08 | 9.136007e+09 |
2017-07-03 | 16.65 | 16.60 | 16.70 | 16.26 | 3.841730e+08 | 6.322371e+09 |
2017-07-10 | 16.58 | 17.02 | 17.17 | 16.56 | 6.843106e+08 | 1.157603e+10 |
2017-07-17 | 16.96 | 17.16 | 17.46 | 16.30 | 7.973258e+08 | 1.352791e+10 |
2017-07-24 | 17.13 | 16.92 | 17.32 | 16.85 | 4.537773e+08 | 7.752429e+09 |
2017-07-31 | 16.91 | 17.20 | 17.49 | 16.85 | 6.463520e+08 | 1.114122e+10 |
2017-08-07 | 17.10 | 16.52 | 17.16 | 16.50 | 4.882033e+08 | 8.225036e+09 |
2017-08-14 | 16.57 | 16.70 | 16.84 | 16.41 | 2.849387e+08 | 4.755836e+09 |
2017-08-21 | 16.70 | 17.14 | 17.15 | 16.60 | 3.811794e+08 | 6.435678e+09 |
2017-08-28 | 17.31 | 18.30 | 18.52 | 17.27 | 1.026149e+09 | 1.861162e+10 |
2017-09-04 | 18.27 | 17.77 | 18.35 | 17.72 | 4.464087e+08 | 8.072975e+09 |
2017-09-11 | 17.70 | 18.03 | 18.22 | 17.66 | 4.189278e+08 | 7.524671e+09 |
2017-09-18 | 18.08 | 18.14 | 18.48 | 17.81 | 5.045833e+08 | 9.190243e+09 |
2017-09-25 | 18.10 | 18.19 | 18.35 | 17.89 | 3.134206e+08 | 5.670006e+09 |
2017-10-09 | 18.64 | 18.00 | 18.76 | 17.92 | 3.703520e+08 | 6.728820e+09 |
2017-10-16 | 18.00 | 17.78 | 18.23 | 17.68 | 3.198862e+08 | 5.739497e+09 |
2017-10-23 | 17.79 | 17.86 | 18.05 | 17.53 | 2.746486e+08 | 4.889915e+09 |
2017-10-30 | 17.80 | 17.27 | 17.83 | 16.94 | 3.877810e+08 | 6.703056e+09 |
2017-11-06 | 17.11 | 18.39 | 18.52 | 16.99 | 7.081138e+08 | 1.274872e+10 |
2017-11-13 | 18.37 | 18.30 | 18.61 | 17.77 | 6.528992e+08 | 1.185311e+10 |
2017-11-20 | 18.15 | 19.01 | 19.95 | 17.40 | 1.471590e+09 | 2.809600e+10 |
2017-11-27 | 18.89 | 18.94 | 19.90 | 18.50 | 9.140774e+08 | 1.745698e+10 |
2017-12-04 | 18.80 | 18.51 | 19.45 | 18.40 | 7.204366e+08 | 1.367074e+10 |
2017-12-11 | 18.46 | 17.95 | 18.78 | 17.92 | 4.084757e+08 | 7.500015e+09 |
2017-12-18 | 17.95 | 18.19 | 18.33 | 17.78 | 3.923193e+08 | 7.105757e+09 |
2017-12-25 | 18.23 | 18.10 | 18.45 | 17.95 | 4.105372e+08 | 7.483164e+09 |
2018-01-02 | 18.13 | 18.88 | 19.09 | 18.13 | 5.789717e+08 | 1.080687e+10 |
2018-01-08 | 19.00 | 19.33 | 19.87 | 18.91 | 7.611319e+08 | 1.476568e+10 |
2018-01-15 | 19.25 | 21.29 | 21.89 | 18.98 | 1.613783e+09 | 3.354749e+10 |
2018-01-22 | 21.10 | 22.33 | 22.95 | 20.90 | 1.341085e+09 | 2.933657e+10 |
ok,效果已经出来了。需要的自己封装成方法,调用即可。