繁簡切換您正在訪問的是FX168財經網,本網站所提供的內容及信息均遵守中華人民共和國香港特別行政區當地法律法規。

FX168财经网>人物频道>帖子

深度强化学习选股-上证50指数增强

作者/asdkjkd 2019-05-10 07:19 0 来源: FX168财经网人物频道

简单的强化学习选股框架,在选股方面训练虚拟交易员选股调仓,实现SH50指数增强。

github

深度强化学习选股¶

上证50指数增强¶

简单的强化学习选股框架,在选股方面训练虚拟交易员选股调仓,实现SH50指数增强。

在每个交易日,Agent根据获取的观测数据[Batch, Length, Factor]计算出一个行为向量[Batch],对50只成份股进行调仓,先卖后买使用,使用开盘价成交,在每交易日结束,使用收盘价评估持仓获得reward。

Agent 推断架构为2层LSTM后接MLP输出。

在与训练环境交互的时候使用gather处理n step折现问题。

注:交互环境-账户Account使用向量的方法并行SH50成份股,所以交互环境中股票的顺序是绑定的,并且股票种类使用Batch固定为50。

trainable neural network

import tensorflow as tf
import numpy as np
from sonnet.python.modules.base import AbstractModule
from sonnet.python.modules.basic import Linear as sntLinear
from sonnet.python.modules.gated_rnn import LSTM as sntLSTM
from sonnet.python.modules.basic_rnn import DeepRNN as sntDeepRNN
from sonnet.python.modules.basic import BatchApply as sntBatchApply


def swich(inputs):
    return inputs * tf.nn.sigmoid(inputs)


def Linear(name, output_size):
    initializers = {"w": tf.truncated_normal_initializer(stddev=0.1),
                    "b": tf.constant_initializer(value=0.1)}
    regularizers = {"w": tf.contrib.layers.l2_regularizer(scale=0.1),
                    "b": tf.contrib.layers.l2_regularizer(scale=0.1)}
    return sntLinear(output_size,
                      initializers=initializers,
                      regularizers=regularizers,
                      name=name)

def build_common_network(inputs):
    """common network
    :param inputs: [Time, Batch, state_size]
    :return: [Time, Batch, hidden_size]
    """
    # build rnn
    batch_size = inputs.get_shape().as_list()[1]
    l1 = sntLSTM(64, name='rnn_first')
    l2 = sntLSTM(32, name='rnn_second')
    rnn = sntDeepRNN([l1, l2])
    initial_state = rnn.initial_state(batch_size)
    # looping
    output_sequence, final_state = tf.nn.dynamic_rnn(
        rnn, inputs, initial_state=initial_state, time_major=True)
    return output_sequence


class ActorNet(AbstractModule):
    """actor network
    """
    def __init__(self, name='Actor'):
        super().__init__(name=name)

    def _build(self, output_size, inputs):
        # loop net -> [Time, Batch, hidden_size]
        net = build_common_network(inputs)  # rnn output (-1, 1)
        # linear net
        net = sntBatchApply(Linear('input_layer', 64))(net)
        net = swich(net)
        net = sntBatchApply(Linear('output_layer', output_size))(net)
        return tf.nn.softmax(net)  # [Time, Batch, output_size]

    def get_regularization(self):
        return self.get_variables(tf.GraphKeys.REGULARIZATION_LOSSES)


class CriticNet(AbstractModule):
    """critic network
    """
    def __init__(self, name='critic'):
        super().__init__(name=name)

    def _build(self, inputs):
        # loop net -> [Time, Batch, hidden_size]
        net = build_common_network(inputs)  # range (-1, 1)
        # linear net
        net = sntBatchApply(Linear('input_layer', 64))(net)
        net = swich(net)
        net = sntBatchApply(Linear('output_layer', 1))(net)
        net = tf.squeeze(net, axis=2)
        # net = tf.nn.tanh(net)
        return tf.reduce_mean(net, axis=1)  # [Time]

    def get_regularization(self):
        return self.get_variables(tf.GraphKeys.REGULARIZATION_LOSSES)

Access

LEARNING_RATE = 1e-3
DECAY_RATE = 0.99


class Access(object):
    def __init__(self, batch_size, state_size, action_size):
        with tf.variable_scope('Access'):
            # placeholder
            self.inputs = tf.placeholder(tf.float32, [None, batch_size, state_size], 'inputs')
            # network interface
            self.actor = ActorNet('actor')
            self.critic = CriticNet('critic')

            self.policy = tf.nn.softmax(self.actor(action_size, self.inputs))
            self.value = self.critic(self.inputs)

        # global optimizer
        self.optimizer_actor = tf.train.RMSPropOptimizer(
            LEARNING_RATE, DECAY_RATE, name='optimizer_actor')
        self.optimizer_critic = tf.train.RMSPropOptimizer(
            LEARNING_RATE, DECAY_RATE, name='optimizer_critic')

        # saver
        var_list = self.get_trainable()
        var_list = list(var_list[0] + var_list[1])
        self.saver = tf.train.Saver(var_list=var_list)

    def get_trainable(self):
        return [self.actor.get_variables(), self.critic.get_variables()]

    def save(self, sess, path):
        self.saver.save(sess, path)

    def restore(self, sess, path):
        var_list = list(self.get_trainable()[0] + self.get_trainable()[1])
        saver = tf.train.Saver(var_list=var_list)
        saver.restore(sess, path)

Agent

CLIP_MIN = 0.01
CLIP_MAX = 0.98
ENTROPY_BETA = 0.01
MAX_GRAD_NORM = 50


def batch_choice(a, p):
    action_list = [np.random.choice(a, p=i) for i in p]
    return np.array(action_list)


# local network for advantage actor-critic which are also know as A2C
class Agent(object):
    def __init__(self, name, access, batch_size, state_size, action_size):
        self.Access = access
        self.action_size = action_size
        self.batch_size = batch_size

        with tf.variable_scope(name):
            # placeholder

            # [Time, Batch, N]
            self.inputs = tf.placeholder(
                tf.float32, [None, batch_size, state_size], 'inputs')

            # [T_MAX, Batch]
            self.actions = tf.placeholder(
                tf.int32, [None, batch_size], "actions")

            # [T_MAX]
            self.targets = tf.placeholder(tf.float32, [None], "discounted_rewards")
            self.gathers = tf.placeholder(tf.int32, [None], 'gather_list')

            # build network
            self.actor = ActorNet('actor')
            self.critic = CriticNet('critic')
            policy = self.actor(action_size, self.inputs)  # [Time, Batch, action_size]
            value = self.critic(self.inputs)  # [Time]

            # fix
            policy = tf.clip_by_value(policy, CLIP_MIN, CLIP_MAX, 'constraint')

            # interface
            self.policy = tf.gather(policy, self.gathers)  # [T_MAX, Batch, action_size]
            self.value = tf.gather(value, self.gathers)  # [T_MAX]
            self.policy_step = policy[-1]  # [Batch, action_size]
            self.value_step = value[-1]  # 1

            # build function
            self._build_losses()
            self._build_async()
            self._build_interface()
            print('graph %s' % (str(name)))

    def _build_losses(self):
        # value loss
        self.advantage = self.targets - self.value  # [T_MAX]
        value_loss = 0.5 * tf.square(self.advantage)

        # policy loss
        # [T_MAX, Batch, action_size] -> [T_MAX, Batch]
        policy_action = tf.reduce_sum(
            self.policy * tf.one_hot(self.actions, self.action_size), axis=2)
        # [T_MAX, Batch]
        policy_loss = -tf.log(policy_action) * tf.stop_gradient(
            tf.expand_dims(self.advantage, axis=1))
        # entropy loss [T_MAX, Batch]
        entropy_loss = tf.reduce_sum(self.policy * tf.log(self.policy), axis=2)

        # total loss
        self.critic_loss = tf.reduce_mean(value_loss)
        self.actor_loss = tf.reduce_mean(policy_loss + entropy_loss * ENTROPY_BETA)

        # interface
        self.a_entropy_loss = tf.reduce_mean(entropy_loss)
        self.a_policy_loss = tf.reduce_mean(policy_loss)
        self.a_value_loss = tf.reduce_mean(value_loss)
        self.a_critic_loss = self.critic_loss
        self.a_actor_loss = self.actor_loss
        self.a_advantage = tf.reduce_mean(self.advantage)
        self.a_value_mean = tf.reduce_mean(self.value)
        self.a_policy_mean = tf.reduce_mean(self.policy)

    def _build_async(self):
        global_actor_params, global_critic_params = self.Access.get_trainable()
        local_actor_params, local_critic_params = self.get_trainable()
        actor_grads = tf.gradients(self.actor_loss, list(local_actor_params))
        critic_grads = tf.gradients(self.critic_loss, list(local_critic_params))

        # Set up optimizer with global norm clipping.
        actor_grads, self.a_actor_grad = tf.clip_by_global_norm(actor_grads, MAX_GRAD_NORM)
        critic_grads, self.a_critic_grad = tf.clip_by_global_norm(critic_grads, MAX_GRAD_NORM)

        # update Access
        actor_apply = self.Access.optimizer_actor.apply_gradients(
            zip(list(actor_grads), list(global_actor_params)))
        critic_apply = self.Access.optimizer_critic.apply_gradients(
            zip(list(critic_grads), list(global_critic_params)))
        self.update_global = [actor_apply, critic_apply]

        # update ACNet
        assign_list = []
        for gv, lv in zip(global_actor_params, local_actor_params):
            assign_list.append(tf.assign(lv, gv))
        for gv, lv in zip(global_critic_params, local_critic_params):
            assign_list.append(tf.assign(lv, gv))
        self.update_local = assign_list

    def _build_interface(self):
        self.a_interface = [self.a_actor_loss,
                            self.a_actor_grad,
                            self.a_policy_mean,
                            self.a_policy_loss,
                            self.a_entropy_loss,
                            self.a_critic_loss,
                            self.a_critic_grad,
                            self.a_value_loss,
                            self.a_value_mean,
                            self.a_advantage]

    def get_trainable(self):
        return [self.actor.get_variables(), self.critic.get_variables()]

    def init_or_update_local(self, sess):
        """
        init or update local network
        :param sess:
        :return:
        """
        sess.run(self.update_local)

    def get_step_policy(self, sess, inputs):
        return sess.run(self.policy_step, {self.inputs: inputs})

    def get_step_value(self, sess, inputs):
        return sess.run(self.value_step, {self.inputs: inputs})

    def get_losses(self, sess, inputs, actions, targets, gather_list):
        """
        get all loss functions of network
        :param sess:
        :param inputs:
        :param actions:
        :param targets:
        :return:
        """
        feed_dict = {self.inputs: inputs,
                     self.actions: actions,
                     self.targets: targets,
                     self.gathers: gather_list}
        return sess.run(self.a_interface, feed_dict)

    def train_step(self, sess, inputs, actions, targets, gathers):
        feed_dict = {self.inputs: inputs,
                     self.actions: actions,
                     self.targets: targets,
                     self.gathers: gathers}
        sess.run(self.update_global, feed_dict)

    # get stochastic action for train
    def get_stochastic_action(self, sess, inputs, epsilon=0.9):
        if np.random.uniform() < epsilon:
            policy = sess.run(self.policy_step, {self.inputs: inputs})
            return batch_choice(self.action_size, policy)
        else:
            return np.random.randint(self.action_size, size=self.batch_size)

    # get deterministic action for test
    def get_deterministic_policy_action(self, sess, inputs):
        policy_step = sess.run(self.policy_step, {self.inputs: inputs})
        return np.argmax(policy_step, axis=1)

Framework

from agent.actor_critic import Agent


MAX_EPISODE_LENGTH = 200
GAMMA = 0.9


def batch_stack(inputs):
    # gather index
    gather_list = 63 + 16 * np.arange(len(inputs))
    # stack
    a = [inputs[0][:-16]]
    b = [i[-16:] for i in inputs]
    return np.vstack(a + b), gather_list


class Framework(object):
    def __init__(self, name, access, batch_size, state_size, action_size):
        self.Access = access
        self.AC = Agent(name, self.Access, batch_size, state_size, action_size)
        self.env = Account()
        self.name = name

    def run(self, sess, max_episodes, t_max=8):
        buffer_score = []
        buffer_loss = []
        episode = 0
        while episode < max_episodes:
            episode += 1
            episode_score, outputs = self.run_episode(sess, t_max)
            buffer_score.append(episode_score)
            buffer_loss.append(outputs)
        return buffer_score, buffer_loss

    def run_episode(self, sess, t_max=8):
        t_start = t = 0
        episode_score = 1
        buffer_state = []
        buffer_action = []
        buffer_reward = []

        self.AC.init_or_update_local(sess)
        state = self.env.reset()
        while True:
            t += 1
            action = self.AC.get_stochastic_action(sess, state)
            next_state, reward, done = self.env.step(action)

            # buffer for loop
            episode_score *= (1 + reward / 100)
            buffer_state.append(state)
            buffer_action.append(action)
            buffer_reward.append(reward)
            state = next_state

            if t - t_start == t_max or done:
                t_start = t
                terminal = self.get_bootstrap(sess, next_state, done)

                buffer_target = []
                for r in buffer_reward[::-1]:
                    terminal = r + GAMMA * terminal
                    buffer_target.append(terminal)
                buffer_target.reverse()

                # stack
                inputs, gather_list = batch_stack(buffer_state)
                actions = np.vstack(buffer_action)
                targets = np.squeeze(np.vstack(buffer_target), axis=1)

                # empty buffer
                buffer_state = []
                buffer_action = []
                buffer_reward = []

                # update Access gradients
                self.AC.train_step(sess, inputs, actions, targets, gather_list)

                # update local network
                self.AC.init_or_update_local(sess)

            if done or t > MAX_EPISODE_LENGTH:
                outputs = self.get_losses(sess, inputs, actions, targets, gather_list)
                outputs = tuple(outputs)
                if self.name == 'W0':
                    print('actor: %f, actor_grad: %f, policy mean: %f, policy: %f, entropy: %f, '
                          'critic: %f, critic_grad: %f, value: %f, value_mean: %f, advantage: %f'
                          % outputs)
                return episode_score, outputs

    def get_bootstrap(self, sess, next_state, done):
        if done:
            terminal = 0
        else:
            terminal = self.AC.get_step_value(sess, next_state)
        return terminal

    def get_losses(self, sess, inputs, actions, targets, gather_list):
        return self.AC.get_losses(sess, inputs, actions, targets, gather_list)

main

import multiprocessing
import threading
from env.env_main import Account

NUMS_CPU = multiprocessing.cpu_count()
state_size = 58
batch_size = 50
action_size = 3
max_episodes = 1
GD = {}
class Worker(Framework):

    def __init__(self, name, access, batch_size, state_size, action_size):
        super().__init__(name, access, batch_size, state_size, action_size)

    def run(self, sess, max_episodes, t_max=8):
        episode_score_list = []
        episode = 0
        while episode < max_episodes:
            episode += 1
            episode_socre, _ = self.run_episode(sess, t_max)
            episode_score_list.append(episode_socre)
            GD[str(self.name)] = episode_score_list
            if self.name == 'W0':
                print('Episode: %f, score: %f' % (episode, episode_socre))
                print('\n')
with tf.Session() as sess:
    with tf.device("/cpu:0"):
        A = Access(batch_size, state_size, action_size)
        F_list = []
        for i in range(NUMS_CPU):
            F_list.append(Worker('W%i' % i, A, batch_size, state_size, action_size))
        COORD = tf.train.Coordinator()
        sess.run(tf.global_variables_initializer())
        sess.graph.finalize()

        threads_list = []
        for ac in F_list:
            job = lambda: ac.run(sess, max_episodes)
            t = threading.Thread(target=job)
            t.start()
            threads_list.append(t)
        COORD.join(threads_list)
        A.save(sess, 'model/saver_1.ckpt')
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
E:\software\Anaconda363\lib\site-packages\tensorflow\python\ops\gradients_impl.py:96: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
  "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
graph W0
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
graph W1
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
graph W2
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
graph W3
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
graph W4
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
graph W5
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
graph W6
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
graph W7
actor: -0.676055, actor_grad: 0.073945, policy mean: 0.333333, policy: -0.665087, entropy: -1.096820, critic: 0.243507, critic_grad: 0.849599, value: 0.243507, value_mean: 0.189615, advantage: -0.606338
Episode: 1.000000, score: 0.998724


test

tf.reset_default_graph()
import pandas as pd
import seaborn as sns
sns.set_style('whitegrid')
%matplotlib inline
state_size = 58
batch_size = 50
action_size = 3


config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
    with tf.device("/cpu:0"):
        A = Access(batch_size, state_size, action_size)
        W = Agent('W0', A, batch_size, state_size, action_size)
        A.restore(sess,'model/saver_1.ckpt')
        W.init_or_update_local(sess)
        env = Account()
        state = env.reset()
        for _ in range(200):
            action = W.get_deterministic_policy_action(sess, state)
            state, reward, done = env.step(action)
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
WARNING:tensorflow:The `skip_connections` argument will be deprecated. Please use snt.SkipConnectionCore instead.
E:\software\Anaconda363\lib\site-packages\tensorflow\python\ops\gradients_impl.py:96: UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
  "Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
graph W0
INFO:tensorflow:Restoring parameters from model/saver_1.ckpt
value, reward = env.plot_data()

pd.Series(value).plot(figsize=(16,6))
<matplotlib.axes._subplots.AxesSubplot at 0x20cb120dc88>
pd.Series(reward).plot(figsize=(16,6))
pd.Series(np.zeros_like(reward)).plot(figsize=(16,6), color='r')
<matplotlib.axes._subplots.AxesSubplot at 0x20cbf1ef128>
 
分享到:
举报财经168客户端下载

全部回复

0/140

投稿 您想发表你的观点和看法?

更多人气分析师

  • 张亦巧

    人气2200文章4145粉丝45

    暂无个人简介信息

  • 王启蒙现货黄金

    人气304文章3275粉丝8

    本人做分析师以来,并专注于贵金属投资市场,尤其是在现货黄金...

  • 指导老师

    人气1864文章4423粉丝52

    暂无个人简介信息

  • 李冉晴

    人气2320文章3821粉丝34

    李冉晴,专业现贷实盘分析师。

  • 梁孟梵

    人气2176文章3177粉丝39

    qq:2294906466 了解群指导添加微信mfmacd

  • 张迎妤

    人气1896文章3305粉丝34

    个人专注于行情技术分析,消息面解读剖析,给予您第一时间方向...

  • 金泰铬J

    人气2328文章3925粉丝51

    投资问答解咨询金泰铬V/信tgtg67即可获取每日的实时资讯、行情...

  • 金算盘

    人气2696文章7761粉丝125

    高级分析师,混过名校,厮杀于股市和期货、证券市场多年,专注...

  • 金帝财神

    人气4760文章8329粉丝119

    本文由资深分析师金帝财神微信:934295330,指导黄金,白银,...

FX168财经

FX168财经学院

FX168财经

FX168北美