繁簡切換您正在訪問的是FX168財經網,本網站所提供的內容及信息均遵守中華人民共和國香港特別行政區當地法律法規。

FX168财经网>人物频道>帖子

包含MACD日线,盘中量比选优,定时运行的实盘策略

作者/1xxxxxxxx 2019-05-10 03:56 0 来源: FX168财经网人物频道

包含MACD日线,盘中量比选优,定时运行的实盘策略,可在其基础上继续优化

import pandas as pd
import numpy as np
import talib  ## 使用talib计算MACD的参数
import time
import sys
import json
from jqlib.technical_analysis import *

#this version to develop yellowline and every time focus time context#
def initialize(context):
    g.security = ['000030.XSHE', '000036.XSHE', '000069.XSHE', '000488.XSHE',
       '000501.XSHE', '000537.XSHE', '000581.XSHE', '000591.XSHE',
       '000636.XSHE', '000651.XSHE', '000717.XSHE', '000720.XSHE',
       '000825.XSHE', '000830.XSHE', '000877.XSHE', '000885.XSHE',
       '000898.XSHE', '000900.XSHE', '000921.XSHE', '000926.XSHE',
       '000932.XSHE', '000983.XSHE', '002068.XSHE', '002078.XSHE',
       '002092.XSHE', '002110.XSHE', '002128.XSHE', '002195.XSHE',
       '002462.XSHE', '002589.XSHE', '300145.XSHE']
    set_backtest()
    run_daily(begin,time='09:30')
    
    run_daily(trade,time='09:33')
    #run_daily(trade,time='09:34')
    #run_daily(trade,time='09:35')
    run_daily(trade,time='09:36')
    #run_daily(trade,time='09:37')
    #run_daily(trade,time='09:39')
    run_daily(trade,time='09:40')
    run_daily(trade,time='09:45')
    run_daily(trade,time='09:50')
    run_daily(trade,time='09:55')
    run_time(30)#每30分钟运行一次
    #run_daily(trade1,time='10:00')
  
def run_time(x):
    datas = get_price('000300.XSHG',count=200,frequency='1m').index.tolist()[:-1]#剔除15:00
    times = [str(t)[-8:] for t in datas]
    #print(times)
    #times.insert(0,'09:30:00')
    for t in times[::x]:
        run_daily(trade1, t)

def set_backtest():
    set_benchmark('000300.XSHG') 
    set_option('use_real_price', True)  
    log.set_level('order', 'error')

def order_dict(dicts, n):
    result = []
    result1 = []
    p = sorted([(k, v) for k, v in dicts.items()], reverse=True)
    s = set()
    for i in p:
        s.add(i[1])
    for i in sorted(s, reverse=True)[:n]:
        for j in p:
            if j[1] == i:
                result.append(j)
    for r in result:
        result1.append(r[0])
    #print (result1)
    return result1
    
def get_v_ratio(security_list,time):
    #'''计算某个时间点股票的量比,
    #输入:股票池/股票,时间(datetime)
    #返回:截至当天某一时间点的量比'''
    if isinstance(security_list, str):
        security_list = [security_list]
    d = {}
    time2= time-datetime.timedelta(days=1)
    start_time = datetime.datetime(time.year,time.month,time.day,9,30)
    for security in security_list:
        ma5 = get_price(security,end_date=time2,count=5,skip_paused=True,fields='volume').volume.sum()/1200
        n_ma = get_price(security,end_date=time,start_date =start_time ,skip_paused=True,fields='volume',
                          frequency='1m').volume.mean()
        d[security]=n_ma/ma5
    return d
#分时黄金线实际是当日平均价#
def get_yellowline(security_list,time):
    if isinstance(security_list, str):
        security_list = [security_list]
    d = {}
    time2= time-datetime.timedelta(days=1)
    start_time = datetime.datetime(time.year,time.month,time.day,9,30)
    for security in security_list:
        df1=get_price(security,end_date=time, start_date=start_time,frequency='1m', fields='avg', skip_paused=False, fq='none')
        series1=df1['avg'].mean()
        d[security]=series1
    return d

####1.盘前只留MACD day good####
def begin(context):
    stockpoolbegin = g.security
 
    long_list = []
    g.short_list = []
    result = []
    g.stockpool = []
    g.stockpoollist= []
    g.hold = []
    g.stockset = list(context.portfolio.positions.keys())
    #print('portfolio_value',context.portfolio.portfolio_value)
    for stock in stockpoolbegin:
        #prices = attribute_history(stock,300, '1d',['close'])
        prices = get_bars(stock, 50, '1d',include_now=True)
        price = array(prices['close'])
        #print(price)
        macd_tmp = talib.MACD(price, fastperiod=12, slowperiod=26, signalperiod=20)
        #print(macd_tmp)
        DIF = macd_tmp[0]
        DEA = macd_tmp[1]
        MACD = np.round(macd_tmp[2],3)
        #print(MACD)
        # 判断MACD走向
        if MACD[-1] > 0:
        #if MACD[-1] < 0 and MACD[-1] > MACD[-2] and MACD[-2] <MACD[-3]:
            print(MACD[-2],MACD[-1],'choose it',stock)
            r = (stock,MACD[-1])
            result.append(r)
            #g.stockpool.append(stock)
            
        elif MACD[-1] < 0:
        #elif MACD[-1] > 0 and MACD[-1] < MACD[-2] and MACD[-2] >MACD[-3]:
            print(MACD[-2],MACD[-1],'exclude it',stock)
            g.short_list.append(stock)
        #elif MACD[-1] > 0 and MACD[-1] > MACD[-2]*1.3:
            #long_list.append(stock)
        #elif MACD[-1] < MACD[-2] *0.8:
            #short_list.append(stock)
    result = np.array(result)
    columns = ['stock','macd-1']
    num_columns =['macd-1']
    g.stockpoollist=pd.DataFrame(data = result, columns=columns)
    #g.stockpoollist[num_columns] = g.stockpoollist[num_columns].apply(pd.to_numeric, errors='ingnore')
    g.stockpoollist=g.stockpoollist.sort_index(axis = 0,ascending =False,by = 'macd-1')
    g.stockpool=g.stockpoollist.head(50)['stock']
    #print(g.stockpoollist)
    print('short_list by day MACD',g.short_list)
    print('choosed by day MACD',g.stockpool)
    for stock in g.stockset:
        if stock in g.short_list:
            print('sell it right now with bad day MACD', stock)
            order_target_value(stock, 0) 
            #order_value(stock, -10000)
        else:
            g.hold.append(stock)#如果不在卖出列表里则持有
    print('temp hold for today following test',g.hold)


##2.Qucik handle the valume ratio good' stock to buy or not##   
def trade(context):
#按分钟回测/模拟, 在每分钟的第一秒运行, 每天执行240次,

    security_list =g.stockpool.tolist()
    #time = datetime.datetime(2019,3,14,15,00)
    time=datetime.datetime.now()
    #回测中: 
    time = context.current_dt
    volume_ratio=get_v_ratio(security_list,time)
    print ('volume_ratio',volume_ratio)
    stockpool=order_dict(volume_ratio, 3)
    print ('after filter',stockpool)
    g.stockset = list(context.portfolio.positions.keys())
    result = []
    long_list = []
    hold = []
    g.short_list = []
    
    for stock in stockpool:
        prices = get_bars(stock, 5, '1m',include_now=True)
        #print(prices)
        price = array(prices['close'])
        #print(price)
        #macd_tmp = talib.MACD(price, fastperiod=12, slowperiod=26, signalperiod=20)
        #DIF = macd_tmp[0]
        #DEA = macd_tmp[1]
        #MACD = np.round(macd_tmp[2],3)
        #print(stock,MACD[-1],MACD[-2],MACD[-3])
        time2= time-datetime.timedelta(days=1)
        start_time = datetime.datetime(time.year,time.month,time.day,9,30)
        df1=get_price(stock,end_date=time, start_date=start_time,frequency='1m', fields='avg', skip_paused=False, fq='none')
        yellowline=df1['avg'].mean()
        
        # 判断MACD走向??need to judge the 1 minutes rate
        if price[-1] > yellowline:
        #if MACD[-1] > 0: #and MACD[-2] <0:
        #if MACD[-1] < 0 and MACD[-1] > MACD[-2]*1.002 and MACD[-2] <MACD[-3]*1.005:
            print(price[-1],yellowline,'buy it at',price[-1],stock)
            #print(MACD[-3],MACD[-2],MACD[-1],'buy it at',price[-1],stock)
            long_list.append(stock)
            
        elif price[-1] < yellowline: 
        #elif MACD[-1] > 0 and MACD[-1] < MACD[-2]*1.005 and MACD[-2] >MACD[-3]*1.002:
            print(price[-1],yellowline,'sell it at',price[-1],stock)
            #print(MACD[-3],MACD[-2],MACD[-1],'sell it at',price[-1],stock)
            g.short_list.append(stock)
        #elif MACD[-1] > 0 and MACD[-1] > MACD[-2]*1.3:
            #long_list.append(stock)
        #elif MACD[-1] < MACD[-2] *0.8:
            #short_list.append(stock)
    print('long_list',long_list)
    print('short_list',g.short_list)
    for stock in g.stockset:
        if stock in g.short_list:
            print('sell it right now with bad 1 minute data and high volume', stock)
            #order_target_value(stock, 0) 
            order_value(stock, -10000)
        else:
            hold.append(stock)#如果不在卖出列表里则持有
    #print(hold)
    buy_list = []
    for stock in long_list:
        #if stock not in hold:
        buy_list.append(stock)#新增的买入股票

    if len(buy_list)==0: 
        Cash = context.portfolio.available_cash
        #print(Cash)
    else:
        #Cash = context.portfolio.available_cash/10#len(buy_list)
        for stock in buy_list:
            #order_target_value(stock, 30000)   
             # 买入这么多现金的股票
            order_value(stock, 10000)
            print('buy right now with good 1 minute data and high volume',stock)


def trade1(context):
#5分钟for mid of day#
    #print(g.stockpoollist)
    security_list =g.stockpool.tolist()
    #time = datetime.datetime(2019,3,14,15,00)
    time=datetime.datetime.now()
    #回测中: 
    time = context.current_dt
    volume_ratio=get_v_ratio(security_list,time)
    print ('volume_ratio',volume_ratio)
    stockpool=order_dict(volume_ratio, 3)
    print ('after filter',stockpool)
    g.stockset = list(context.portfolio.positions.keys())
    stockpool=list(set(stockpool+g.stockset))
    #两个list比较去除重复元素,然后合并#
    print('filtered combined hold for total focus',stockpool)
    result = []
    long_list = []
    hold = []
    g.short_list = []
    
    for stock in stockpool:
        pricesd = get_bars(stock, 3, '1d',include_now=True)
        priced=array(pricesd['open'])
        print('open price',priced[-1])
        prices = get_bars(stock, 50, '5m',include_now=True)
        price = array(prices['close'])
        print('current price',price[-1])
        #macd_tmp = talib.MACD(price, fastperiod=12, slowperiod=26, signalperiod=20)
        #DIF = macd_tmp[0]
        #DEA = macd_tmp[1]
        #MACD = np.round(macd_tmp[2],3)
        #print(stock,MACD[-1],MACD[-2],MACD[-3])
        time2= time-datetime.timedelta(days=1)
        start_time = datetime.datetime(time.year,time.month,time.day,9,30)
        df1=get_price(stock,end_date=time, start_date=start_time,frequency='1m', fields='avg', skip_paused=False, fq='none')
        yellowline=df1['avg'].mean()

        # 判断MACD走向and if current price not lower than beginning price
        #if MACD[-1] > 0: #and MACD[-2] <0:
        if price[-1] > yellowline and price[-1]>priced[-1]:
        #if MACD[-1] > 0 and MACD[-1] > MACD[-2]*1 and MACD[-1] <MACD[-2]*1.05 and price[-1]>priced[-1]:
        #if MACD[-1] < 0 and MACD[-1] > MACD[-2]*1.002 and MACD[-2] <MACD[-3]*1.005 and price[-1]>priced[-1]:
            print(price[-1],yellowline,'buy it at',price[-1],stock) 
            #?if add ratio to avoid catch too high
            long_list.append(stock)
            
        #elif MACD[-1] < 0: #and MACD[-2] >0:
        #elif MACD[-1] > 0 and MACD[-1] < MACD[-2]*1.05 and MACD[-2] >MACD[-3]*1.02:
            #print(MACD[-1],MACD[-2],MACD[-3],'sell it at',price[-1],stock)
        else:
            g.short_list.append(stock)
    print('long_list',long_list)
    print('short_list',g.short_list)
    g.stockset = list(context.portfolio.positions.keys())
    for stock in g.stockset:
        if stock not in long_list: #g.short_list:
            print('sell', stock)
            #order_target_value(stock, 0) 
            order_value(stock, -5000*2)
        else:
            hold.append(stock)#如果不在卖出列表里则持有
    #print(hold)
    buy_list = []
    for stock in long_list:
        #if stock not in hold:
        buy_list.append(stock)#新增的买入股票

    if len(buy_list)==0: 
        Cash = context.portfolio.available_cash
        #print(Cash)
    else:
        Cash = context.portfolio.available_cash/len(buy_list)
        for stock in buy_list:
            #调整股票仓位到10000元价值
            #order_target_value(stock, 30000)   
             # 买入这么多现金的股票
            order_value(stock, 5000)
            print('buy')
分享到:
举报财经168客户端下载

全部回复

0/140

投稿 您想发表你的观点和看法?

更多人气分析师

  • 张亦巧

    人气2184文章4145粉丝45

    暂无个人简介信息

  • 梁孟梵

    人气2176文章3177粉丝39

    qq:2294906466 了解群指导添加微信mfmacd

  • 指导老师

    人气1864文章4423粉丝52

    暂无个人简介信息

  • 李冉晴

    人气2320文章3821粉丝34

    李冉晴,专业现贷实盘分析师。

  • 王启蒙现货黄金

    人气296文章3135粉丝8

    本人做分析师以来,并专注于贵金属投资市场,尤其是在现货黄金...

  • 张迎妤

    人气1896文章3305粉丝34

    个人专注于行情技术分析,消息面解读剖析,给予您第一时间方向...

  • 金泰铬J

    人气2328文章3925粉丝51

    投资问答解咨询金泰铬V/信tgtg67即可获取每日的实时资讯、行情...

  • 金算盘

    人气2696文章7761粉丝125

    高级分析师,混过名校,厮杀于股市和期货、证券市场多年,专注...

  • 金帝财神

    人气4760文章8329粉丝119

    本文由资深分析师金帝财神微信:934295330,指导黄金,白银,...

FX168财经

FX168财经学院

FX168财经

FX168北美