请 [注册] 或 [登录]  | 返回主站

量化交易吧 /  量化平台 帖子:3366780 新帖:19

计算 roe_ttm

K线达人发表于:9 月 25 日 00:00回复(1)
import pandas as pd
from datetime import datetime

def roe_ttm(stocklist,scandate,num = 10,period ='Q',cut = True,tb = True):
    if isinstance(scandate,datetime):
        scandate = datetime.strftime(scandate,'%Y-%m-%d')
        
    q = query(
        income.statDate,
        income.pubDate,
        income.code,
        income.np_parent_company_owners,
        indicator.adjusted_profit,
        balance.equities_parent_company_owners,
    ).filter(
        income.code.in_(stocklist)
    )
    
    if period.upper() == 'Q':
        datelist = [str(dt) for dt in pd.date_range(start = '2000-01-01',end = scandate,freq ='Q').to_period('Q')]
    elif period.upper() == 'A':
        datelist = [str(dt) for dt in pd.date_range(start = '2000-01-01',end = scandate,freq ='A').to_period('A')]

    if num + 5 < len(datelist) and period.upper() == 'Q':
        datelist = datelist[-num-5:]
    elif num+1 < len(datelist) and period.upper() == 'A':
        datelist = datelist[-num-1:]
  
    df = pd.DataFrame()
    for dt in datelist:
        df = pd.concat([df,get_fundamentals(q,statDate = dt)],axis =0)
    df.columns =['statDate','pubDate','code','net_profit','adjust_profit','equities']
    df.set_index(['statDate','code'],inplace = True)
    df = df.unstack('code')

    if period.upper() == 'Q':
        net_profit_ttm_df    = pd.rolling_sum(df['net_profit'],4)
        adjust_profit_ttm_df = pd.rolling_sum(df['adjust_profit'],4)
        equities_avg_df      = pd.rolling_apply(df['equities'],4,lambda x:x[0]/2+x[-1]/2)
        
        #tb = 摊薄  cut =扣非
        if cut and tb:
            roe_df = adjust_profit_ttm_df/df['equities']
        elif cut and (not tb):
            roe_df = adjust_profit_ttm_df/equities_avg_df
        elif (not cut) and tb:
            roe_df = net_profit_ttm_df/df['equities']
        else:
            roe_df = net_profit_ttm_df/equities_avg_df
        
    elif period.upper() == 'A':
        equities_avg_df      = pd.rolling_apply(df['equities'],2,lambda x:x[0]/2+x[-1]/2)
    
        #tb = 摊薄  cut =扣非
        if cut and tb:
            roe_df = df['adjust_profit']/df['equities']
        elif cut and (not tb):
            roe_df = df['adjust_profit']/equities_avg_df
        elif (not cut) and tb:
            roe_df = df['net_profit']/df['equities']
        else:
            roe_df = df['net_profit']/equities_avg_df
        
    
    roe_df = roe_df.stack()
    roe_df.columns = 'roe'
    df = df.stack()['pubDate']
        
    df = pd.concat([df,roe_df],axis = 1)
    if cut and tb:
        field = 'roe_cut_tb'
    elif cut and (not tb):
        field = 'roe_cut'
    elif (not cut) and tb:
        field = 'roe_tb'
    else:
        field = 'roe'   
    df.columns =['pubDate',field]
    df.reset_index(inplace = True)
    return df.dropna()
   
#example#
roe_ttm(get_index_stocks('000010.XSHG'),'2017-04-28',num = 10,period ='Q',cut = True,tb = False)
statDate code pubDate roe_cut
482 2014-06-30 600000.XSHG 2014-08-14 0.210588
483 2014-06-30 600008.XSHG 2014-08-09 0.059405
484 2014-06-30 600009.XSHG 2014-08-16 0.118285
485 2014-06-30 600010.XSHG 2014-08-28 0.005136
486 2014-06-30 600015.XSHG 2014-08-07 0.193525
487 2014-06-30 600016.XSHG 2014-08-29 0.217664
488 2014-06-30 600018.XSHG 2014-08-28 0.110354
489 2014-06-30 600019.XSHG 2014-08-23 0.052379
490 2014-06-30 600021.XSHG 2014-08-22 0.166727
492 2014-06-30 600028.XSHG 2014-08-23 0.120284
493 2014-06-30 600029.XSHG 2014-08-30 0.013820
494 2014-06-30 600030.XSHG 2014-08-29 0.063144
495 2014-06-30 600031.XSHG 2014-08-30 0.044918
496 2014-06-30 600036.XSHG 2014-08-30 0.204238
497 2014-06-30 600037.XSHG 2014-08-29 -0.005275
498 2014-06-30 600048.XSHG 2014-08-26 0.221525
499 2014-06-30 600050.XSHG 2014-08-08 0.048828
500 2014-06-30 600060.XSHG 2014-08-22 0.134402
501 2014-06-30 600061.XSHG 2014-08-28 0.007070
502 2014-06-30 600066.XSHG 2014-08-30 0.208256
503 2014-06-30 600068.XSHG 2014-08-26 0.120540
504 2014-06-30 600074.XSHG 2014-08-30 -2.646246
505 2014-06-30 600079.XSHG 2014-08-15 0.094289
506 2014-06-30 600085.XSHG 2014-08-26 0.135753
507 2014-06-30 600089.XSHG 2014-08-28 0.081980
508 2014-06-30 600094.XSHG 2014-08-23 0.047403
509 2014-06-30 600100.XSHG 2014-08-15 0.023661
510 2014-06-30 600104.XSHG 2014-08-14 0.188374
511 2014-06-30 600109.XSHG 2014-08-28 0.071772
512 2014-06-30 600111.XSHG 2014-08-26 0.090932
... ... ... ... ...
2473 2017-03-31 601600.XSHG 2017-04-26 0.015356
2474 2017-03-31 601601.XSHG 2017-04-29 0.091480
2475 2017-03-31 601607.XSHG 2017-04-28 0.097245
2476 2017-03-31 601608.XSHG 2017-04-28 -0.222652
2478 2017-03-31 601618.XSHG 2017-04-29 0.066518
2479 2017-03-31 601628.XSHG 2017-04-28 0.065898
2480 2017-03-31 601633.XSHG 2017-04-28 0.216108
2481 2017-03-31 601668.XSHG 2017-04-27 0.158732
2482 2017-03-31 601669.XSHG 2017-04-28 0.108152
2483 2017-03-31 601688.XSHG 2017-04-27 0.075053
2484 2017-03-31 601699.XSHG 2017-04-28 0.070156
2485 2017-03-31 601718.XSHG 2017-04-26 -0.016722
2486 2017-03-31 601727.XSHG 2017-04-22 0.032152
2487 2017-03-31 601766.XSHG 2017-04-28 0.076205
2488 2017-03-31 601788.XSHG 2017-04-29 0.063190
2489 2017-03-31 601800.XSHG 2017-04-28 0.101710
2490 2017-03-31 601818.XSHG 2017-04-29 0.123080
2491 2017-03-31 601857.XSHG 2017-04-28 0.019394
2493 2017-03-31 601899.XSHG 2017-04-29 0.047350
2494 2017-03-31 601901.XSHG 2017-04-29 0.060062
2495 2017-03-31 601919.XSHG 2017-04-29 -0.248604
2496 2017-03-31 601933.XSHG 2017-04-15 0.082635
2497 2017-03-31 601939.XSHG 2017-04-28 0.147695
2499 2017-03-31 601985.XSHG 2017-04-27 0.109253
2500 2017-03-31 601988.XSHG 2017-04-29 0.101839
2501 2017-03-31 601989.XSHG 2017-04-26 -0.003626
2502 2017-03-31 601992.XSHG 2017-04-27 0.057516
2503 2017-03-31 601998.XSHG 2017-04-26 0.116574
2505 2017-03-31 603589.XSHG 2017-04-28 0.193625
2508 2017-03-31 603993.XSHG 2017-04-28 0.074434

1966 rows × 4 columns

 
 
 

全部回复

0/140

达人推荐

量化课程

    移动端课程