请 [注册] 或 [登录]  | 返回主站

量化交易吧 /  数理科学 帖子:3364742 新帖:6

【量化课堂】基本面量化研究--钢铁行业景气度预测

我是游客发表于:9 月 24 日 09:41回复(1)
import pandas as pd
import numpy as np
from jqdata import gta
import matplotlib.pyplot as plt
import datetime 
import statsmodels.api as sm

数据的导入¶

(包括钢材表观消费量、M2、房屋新开工面积、房屋竣工面积、固定资产投资完成额、商品房销售面积、基础设施建设投资、房地产开发投资完成额、钢铁产量等的月度数据)

steel_fd_data = pd.read_excel('钢铁基本面数据.xls',index_col=0)
###由于数据是wind直接下来的,所以不太干净,先预处理一下、去掉一些注释行
steel_fd_data = steel_fd_data[1:-2]
##数据钢材表观消费量为主,截断此数据开始之前的日期,此数据从2004年1月开始
steel_fd_data = steel_fd_data[steel_fd_data.index>=datetime.datetime(2004,1,1)]

因为有些数据是当年累计值(比如房屋新开工面积),为了方便之后做TTM环比比较,先将其处理为当月数据

由于一月份大多属于过年春节期间,因此不少数据在一月份为缺失值

need_adjust_columns = ['房屋新开工面积:累计值','房屋竣工面积:累计值','商品房销售面积:累计值','固定资产投资完成额:累计值',
                       '固定资产投资完成额:基础设施建设投资:累计值','房地产开发投资完成额:累计值']

steel_fd_data['month'] = steel_fd_data.index.map(lambda x:x.month)
#这些列都是一月份缺失数据的
for column in need_adjust_columns:
    if column != '固定资产投资完成额:基础设施建设投资:累计值':
        steel_fd_data[column.split(':')[0]] = steel_fd_data[column] - steel_fd_data[column].shift(1)
        steel_fd_data.ix[steel_fd_data['month']<=2,column.split(':')[0]] = steel_fd_data[steel_fd_data['month']<=2][column]
    else:
        steel_fd_data[column.split(':')[1]] = steel_fd_data[column] - steel_fd_data[column].shift(1)
        steel_fd_data.ix[steel_fd_data['month']<=2,column.split(':')[0]] = steel_fd_data[steel_fd_data['month']<=2][column]

###钢铁行业收入一月份没有缺失
column_ = '钢铁行业:大中型企业:销售收入:累计值'
steel_fd_data['钢铁行业销售收入'] = steel_fd_data[column_] - steel_fd_data[column_].shift(1)
steel_fd_data.ix[steel_fd_data['month'] == 1,'钢铁行业销售收入'] = steel_fd_data[steel_fd_data['month']==1][column_]
        
#取出接下来需要用的主要数据
data_columns_list = steel_fd_data.columns.tolist()
clean_data = steel_fd_data[data_columns_list[:2]+data_columns_list[-7:]+['产量:汽车:当月值']]
#去除第一行
clean_data = clean_data[1:]

对数据进行滚动TTM处理,并取其环比值¶

clean_data.fillna(0,inplace=True)
TTM_columns = ['表观消费量:钢材:当月值','房屋新开工面积','房屋竣工面积','固定资产投资完成额','基础设施建设投资',\
               '商品房销售面积','房地产开发投资完成额','钢铁行业销售收入','产量:汽车:当月值']
for column in TTM_columns:
    clean_data[column+'TTM'] = pd.rolling_sum(clean_data[column],12)
    clean_data[column+'TTM_环比'] = clean_data[column+'TTM']/clean_data[column+'TTM'].shift(1)-1

这里要对钢材表观消费量数据做一下调整:原因是其数据的不规整性:

其数据在15年及之前在1、2月份都是有的,但是16年之后1、2月份都缺失,如果这时候直接TTM环比的话,16年年初的时候将会有一个大幅的下降, 但这其实是由数据的不规整带来的。因此,在这里将16、17年1、2月的TTM环比数据都改为0

同样,汽车产量从14年之后1、2月的TTM环比数据都改为0

截取整段数据从2006年开始

clean_data['year'] = clean_data.index.map(lambda x:x.year)
clean_data['month'] = clean_data.index.map(lambda x:x.month)

clean_data.ix[(clean_data['year'].isin([2016,2017]))&(clean_data['month'].isin([1,2])),'表观消费量:钢材:当月值TTM_环比'] = 0

clean_data.ix[(clean_data['year'].isin([2014,2015,2016,2017]))&(clean_data['month'].isin([1,2])),'产量:汽车:当月值TTM_环比'] = 0

clean_data = clean_data[clean_data['year']>=2006]
clean_data.ix[(clean_data['year'] == 2006)&(clean_data['month']==8),'商品房销售面积TTM_环比'] = 0
/opt/conda/lib/python3.4/site-packages/pandas/core/indexing.py:415: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self.obj[item] = s
use_columns = [i+'TTM_环比' for i in TTM_columns]+['M2:同比']
use_data = clean_data[use_columns]
use_data.dropna(inplace=True)

###由于列名太长,这里做一个简写,但其值是表示的为TTM_环比值(但M2为同比值)
use_data.columns = ['钢材消费量TTM环比','新开工房TTM环比','竣工房TTM环比','固投TTM环比',\
                    '基建TTM环比','房销售面积TTM环比','房地产投资TTM环比','钢铁行业收入TTM环比','汽车产量TTM环比','M2']
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:3: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  app.launch_new_instance()

钢铁基本面数据之间的关系以及领先与滞后¶

def plot_line_chart(x_axis,y1_axis,y2_axis,label1,label2):
    
    Fig = plt.figure(figsize(10,8))
    Ax = Fig.add_subplot(111)
    lines = Ax.plot(x_axis,y1_axis,'r-',x_axis,y2_axis,'b-')
    lines[0].set_label(label1)
    lines[1].set_label(label2)
    Ax.legend(loc = 0)

def plot_line_chart_double_yaxis(x_axis,y1_axis,y2_axis,label1,label2):
    
    Fig = plt.figure(figsize(10,8))
    Ax = Fig.add_subplot(111)
    Ax.plot(x_axis,y1_axis,'r-')
    Ax.set_ylabel(label1)
    
    Ax_ = Ax.twinx()
    Ax_.plot(x_axis,y2_axis,'b-')
    Ax_.set_ylabel(label2)
    
def calculate_lag(data,column1,column2):
    
    regre_results=[]
    for i in range(-5,6):
        reg_data = pd.concat([data[column1].shift(i),data[column2]],axis =1)
        reg_data.dropna(inplace=True)
        y=reg_data[column1]
        x=reg_data[column2]
        x=sm.add_constant(x)   
        est=sm.OLS(y,x)
        results=est.fit()
        r2 = results.rsquared 
        coef = results.params[1]
        p = results.pvalues[1]
        corr = reg_data[column1].corr(reg_data[column2])
        
        regre_results.append([i,corr,coef,p,r2])
        
    regre_df = pd.DataFrame(regre_results,columns=['领先期','相关系数','回归系数','P值','R方'])
    
    return regre_df

    

钢材表观消费量(TTM)与房屋新开工面积(TTM)¶

plot_line_chart(use_data.index,use_data['钢材消费量TTM环比'],use_data['新开工房TTM环比'],'钢材表观消费量:TTM环比','房屋新开工面积:TTM环比')
chart_xkg_gxf = calculate_lag(use_data,'新开工房TTM环比','钢材消费量TTM环比') 
chart_xkg_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.494652 1.210657 8.057526e-10 0.244680
1 -4 0.511898 1.250358 1.389922e-10 0.262039
2 -3 0.493004 1.204668 7.025351e-10 0.243053
3 -2 0.500122 1.220213 3.145176e-10 0.250122
4 -1 0.514065 1.256256 7.041873e-11 0.264262
5 0 0.470194 1.142141 3.548642e-09 0.221082
6 1 0.393328 0.957595 1.401036e-06 0.154707
7 2 0.343459 0.838657 3.259667e-05 0.117964
8 3 0.188918 0.463060 2.592787e-02 0.035690
9 4 0.140227 0.345719 1.009161e-01 0.019664
10 5 0.108444 0.268907 2.071656e-01 0.011760

房屋新开工面积(TTM)与商品房销售面积(TTM)¶

plot_line_chart(use_data.index,use_data['新开工房TTM环比'],use_data['房销售面积TTM环比'],'房屋新开工面积:TTM环比','商品房销售面积:TTM环比')
chart_xkg_fxs = calculate_lag(use_data,'新开工房TTM环比','房销售面积TTM环比') 
chart_xkg_fxs
领先期 相关系数 回归系数 P值 R方
0 -5 0.439651 0.523825 7.653033e-08 0.193293
1 -4 0.430737 0.512420 1.338582e-07 0.185534
2 -3 0.420003 0.499698 2.645205e-07 0.176403
3 -2 0.309651 0.368403 1.969272e-04 0.095884
4 -1 0.253768 0.303059 2.394450e-03 0.064398
5 0 0.369778 0.440596 5.924863e-06 0.136736
6 1 0.147222 0.175434 8.149016e-02 0.021674
7 2 0.070530 0.085811 4.076314e-01 0.004974
8 3 0.058054 0.070915 4.972431e-01 0.003370
9 4 -0.070280 -0.086537 4.127221e-01 0.004939
10 5 -0.101976 -0.126894 2.357181e-01 0.010399

商品房销售面积(TTM)与钢材表观消费量(TTM)¶

plot_line_chart_double_yaxis(use_data.index,use_data['房销售面积TTM环比'],use_data['钢材消费量TTM环比'],'商品房销售面积:TTM环比','钢材消费量:TTM环比')
chart_fxs_gxf = calculate_lag(use_data,'房销售面积TTM环比','钢材消费量TTM环比') 
chart_fxs_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.036177 0.071470 6.747085e-01 0.001309
1 -4 0.156861 0.312623 6.616168e-02 0.024605
2 -3 0.273446 0.549670 1.125678e-03 0.074773
3 -2 0.374056 0.753450 5.298867e-06 0.139918
4 -1 0.514016 1.053551 7.075580e-11 0.264213
5 0 0.600553 1.224321 2.788067e-15 0.360664
6 1 0.631484 1.288070 4.655938e-17 0.398772
7 2 0.610734 1.247909 1.127121e-15 0.372995
8 3 0.573210 1.175172 1.651489e-13 0.328570
9 4 0.496066 1.023276 6.133997e-10 0.246081
10 5 0.440559 0.912868 7.143625e-08 0.194092

房屋竣工面积(TTM)与钢材消费量(TTM)¶

plot_line_chart_double_yaxis(use_data.index,use_data['竣工房TTM环比'],use_data['钢材消费量TTM环比'],'房屋竣工面积:TTM环比','钢材消费量:TTM环比')
chart_jgf_gxf = calculate_lag(use_data,'竣工房TTM环比','钢材消费量TTM环比') 
chart_jgf_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.039678 0.064767 0.645266 0.001574
1 -4 -0.019928 -0.032464 0.816546 0.000397
2 -3 -0.007979 -0.012993 0.925729 0.000064
3 -2 -0.038046 -0.061846 0.655386 0.001447
4 -1 0.008400 0.013662 0.921246 0.000071
5 0 0.104532 0.168999 0.215708 0.010927
6 1 0.079987 0.129620 0.345758 0.006398
7 2 0.164041 0.265412 0.052782 0.026910
8 3 0.145610 0.236506 0.087202 0.021202
9 4 0.173375 0.282578 0.041992 0.030059
10 5 0.174423 0.285966 0.041499 0.030423

固定投资完成额(TTM)与钢材消费量(TTM)¶

plot_line_chart(use_data.index,use_data['固投TTM环比'],use_data['钢材消费量TTM环比'],'固定投资完成额:TTM环比','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'固投TTM环比','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.244045 0.274462 0.004055 0.059558
1 -4 0.261286 0.293987 0.001965 0.068270
2 -3 0.314153 0.353506 0.000166 0.098692
3 -2 0.347938 0.391230 0.000025 0.121061
4 -1 0.361147 0.406961 0.000011 0.130427
5 0 0.384918 0.435056 0.000002 0.148162
6 1 0.369019 0.415936 0.000007 0.136175
7 2 0.338102 0.381084 0.000044 0.114313
8 3 0.320925 0.361044 0.000117 0.102993
9 4 0.301903 0.340731 0.000320 0.091145
10 5 0.311078 0.352965 0.000216 0.096770

基础设施建设投资(TTM)与钢材表观消费量(TTM)¶

plot_line_chart(use_data.index,use_data['基建TTM环比'],use_data['钢材消费量TTM环比'],'基础设施建设投资:TTM环比','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'基建TTM环比','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 -0.008419 -0.011117 0.922218 0.000071
1 -4 0.043222 0.057071 0.614712 0.001868
2 -3 0.088951 0.117406 0.297732 0.007912
3 -2 0.133310 0.175617 0.116363 0.017772
4 -1 0.180527 0.238504 0.032179 0.032590
5 0 0.248761 0.328629 0.002834 0.061882
6 1 0.292400 0.387371 0.000434 0.085498
7 2 0.288777 0.383791 0.000540 0.083392
8 3 0.292671 0.390291 0.000472 0.085657
9 4 0.298607 0.400987 0.000374 0.089166
10 5 0.316240 0.426768 0.000167 0.100007

房地产投资和钢材消费量(TTM)¶

plot_line_chart(use_data.index,use_data['房地产投资TTM环比'],use_data['钢材消费量TTM环比'],'房地产投资完成额:TTM环比','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'房地产投资TTM环比','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.521876 0.627477 6.164546e-11 0.272354
1 -4 0.486885 0.584353 1.402242e-09 0.237057
2 -3 0.488694 0.586285 1.037837e-09 0.238821
3 -2 0.484789 0.580433 1.282120e-09 0.235020
4 -1 0.477737 0.569918 2.093674e-09 0.228233
5 0 0.455423 0.543601 1.236175e-08 0.207410
6 1 0.395263 0.471935 1.230126e-06 0.156233
7 2 0.330166 0.395118 6.780456e-05 0.109010
8 3 0.227008 0.272194 7.201134e-03 0.051533
9 4 0.170021 0.204532 4.618849e-02 0.028907
10 5 0.121208 0.146595 1.582706e-01 0.014691

汽车产量(TTM)与钢材消费量(TTM)¶

plot_line_chart_double_yaxis(use_data.index,use_data['汽车产量TTM环比'],use_data['钢材消费量TTM环比'],'汽车产量:TTM环比','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'汽车产量TTM环比','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.427195 0.748433 1.928531e-07 0.182495
1 -4 0.525598 0.920078 3.611841e-11 0.276253
2 -3 0.634736 1.111433 4.846082e-17 0.402890
3 -2 0.724027 1.272897 5.128554e-24 0.524216
4 -1 0.736949 1.303056 2.077786e-25 0.543094
5 0 0.785624 1.382278 5.478489e-31 0.617205
6 1 0.690908 1.219318 2.525497e-21 0.477354
7 2 0.648352 1.147791 4.710913e-18 0.420361
8 3 0.545613 0.968759 3.766158e-12 0.297693
9 4 0.461471 0.824318 1.222477e-08 0.212955
10 5 0.346763 0.622978 3.308526e-05 0.120245

M2与钢材消费量(TTM)¶

plot_line_chart_double_yaxis(use_data.index,use_data['M2'],use_data['钢材消费量TTM环比'],'M2','钢材消费量:TTM环比')
chart_gt_gxf = calculate_lag(use_data,'M2','钢材消费量TTM环比') 
chart_gt_gxf
领先期 相关系数 回归系数 P值 R方
0 -5 0.439704 246.609769 7.622284e-08 0.193339
1 -4 0.531815 298.147224 1.920301e-11 0.282828
2 -3 0.606799 340.547427 2.420984e-15 0.368205
3 -2 0.674200 378.166519 6.840686e-20 0.454546
4 -1 0.728889 407.935127 1.238320e-24 0.531279
5 0 0.761632 424.306728 3.678241e-28 0.580083
6 1 0.770310 426.816460 6.021124e-29 0.593378
7 2 0.769847 424.547981 1.069960e-28 0.592665
8 3 0.749096 411.007586 2.849955e-26 0.561145
9 4 0.720866 394.912805 2.087951e-23 0.519648
10 5 0.669588 366.094684 3.704375e-19 0.448349

总结¶

经过前面的一番检验:

1.新开工房面积、房地产投资完成额都是钢材表观消费量的滞后指标

2.固定资产投资完成额、汽车产量与钢材表观消费量基本同步

3.商品房销售面积,基础设施建设投资、M2为钢材表观消费量的领先指标,领先期分别为1~2个月,3~5个月,1~2个月

因此,对于钢铁表观消费量的预测,可以使用商品房销售面积、基础设施建设投资、M2为使用变量

钢材表观消费量TTM环比 预测¶

###以前一年数据作为样本进行滚动回归,得到回归系数,以此系数预测下一个月钢材表观消费量TTM环比增速
###商品房销售面积、基础设施建设投资、M2的领先期分别选为2个月、4个月、2个月
testdata = use_data[['钢材消费量TTM环比','房销售面积TTM环比','基建TTM环比','M2']]
def predict_TTM_growth(testdata,y_var,x_var,x_lag,regre_period = 12):
    
    x_var_lag = []
    for x,lag in zip(x_var,x_lag):
        testdata[x+'_lag'+str(lag)] = testdata[x].shift(lag)
        x_var_lag.append(x+'_lag'+str(lag))
        use_testdata = testdata[[y_var] + x_var_lag]
        use_testdata.dropna(inplace=True) 
        use_testdata[y_var+'_预测'] = np.NaN
    
    corr_chart = use_testdata[x_var_lag].corr()
    print (corr_chart)
    for i in range(regre_period,len(use_testdata)):
    
        train_data = use_testdata[i-regre_period:i]
        y = train_data[y_var]
        x = train_data[x_var_lag]
        x = sm.add_constant(x)
        est = sm.OLS(y,x)
        results = est.fit()
    
        predict_data = use_testdata[i:i+1]
        predict_x = predict_data[x_var_lag]
        predict_x = sm.add_constant(predict_x)

        
        use_testdata.iloc[i,-1] = results.predict(predict_x)
    
    return use_testdata
    
predict_data = predict_TTM_growth(testdata,'钢材消费量TTM环比',['房销售面积TTM环比','基建TTM环比','M2'],[2,4,2])
plot_line_chart(predict_data.index,predict_data['钢材消费量TTM环比'],predict_data['钢材消费量TTM环比_预测'],'钢材消费量TTM环比','钢材消费量TTM环比预测')
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:5: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:8: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:9: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/pandas/core/indexing.py:115: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._setitem_with_indexer(indexer, value)
                 房销售面积TTM环比_lag2  基建TTM环比_lag4   M2_lag2
房销售面积TTM环比_lag2         1.000000      0.198354  0.455816
基建TTM环比_lag4            0.198354      1.000000  0.419496
M2_lag2                 0.455816      0.419496  1.000000
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:27: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

钢铁行业营业收入预测¶

steel_price = steel_fd_data[['钢材价格综合指数']]
steel_price.fillna(method='ffill',inplace = True)
steel_price['钢材价格综合指数_lag2'] = steel_price['钢材价格综合指数'].shift(2)
steel_price['钢材价格综合指数_lag14'] = steel_price['钢材价格综合指数'].shift(14)

tdata = use_data[['钢材消费量TTM环比','房销售面积TTM环比','基建TTM环比','M2']]

###以前一年数据作为样本进行滚动回归,得到回归系数,以此系数预测下一个月钢材表观消费量TTM环比增速
testdata = pd.concat([tdata[['房销售面积TTM环比','基建TTM环比','M2']],\
                      steel_price[['钢材价格综合指数']],\
                      clean_data[['钢铁行业销售收入TTM_环比']][:-3]],axis=1)


predict_data_ = predict_TTM_growth(testdata,'钢铁行业销售收入TTM_环比',\
                                   ['房销售面积TTM环比','基建TTM环比','钢材价格综合指数','钢材价格综合指数','M2'],[2,4,2,14,2])
plot_line_chart(predict_data_.index,predict_data_['钢铁行业销售收入TTM_环比'],predict_data_['钢铁行业销售收入TTM_环比_预测'],\
                '钢铁行业销售收入TTM_环比','钢铁行业销售收入TTM_环比_预测')
/opt/conda/lib/python3.4/site-packages/pandas/core/frame.py:2532: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  **kwargs)
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:3: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  app.launch_new_instance()
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:4: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:8: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:9: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
/opt/conda/lib/python3.4/site-packages/pandas/core/indexing.py:115: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
  self._setitem_with_indexer(indexer, value)
                 房销售面积TTM环比_lag2  基建TTM环比_lag4  钢材价格综合指数_lag2  钢材价格综合指数_lag14  \
房销售面积TTM环比_lag2         1.000000     -0.082437      -0.004757       -0.185949   
基建TTM环比_lag4           -0.082437      1.000000       0.029752        0.170184   
钢材价格综合指数_lag2          -0.004757      0.029752       1.000000        0.514030   
钢材价格综合指数_lag14         -0.185949      0.170184       0.514030        1.000000   
M2_lag2                 0.083721      0.225676       0.328398        0.690747   

                  M2_lag2  
房销售面积TTM环比_lag2  0.083721  
基建TTM环比_lag4     0.225676  
钢材价格综合指数_lag2    0.328398  
钢材价格综合指数_lag14   0.690747  
M2_lag2          1.000000  
/opt/conda/lib/python3.4/site-packages/ipykernel/__main__.py:27: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame

See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

全部回复

0/140

达人推荐

量化课程

    移动端课程