一、前言
A股涨跌受消息面影响巨大,国家货币政策和财政政策的颁布、宏观数据的发布、世界主要经济体市场动向等都会对A股当日涨跌造成直接影响。但是,消息面内容很难通过量化方式提前预知,隔夜消息一般会在开盘时反映,研究开盘后股市走势可以避免消息面影响。
本文研究开盘后日内走势,采用最基本的动量交易思想,探索有效的高频因子。
二、策略思路
研究时间:2017-01-01至2019-09-04
数据获取:
1. 当日开盘数据,本文设置为5分钟
2. 过去几日的涨跌幅,用以判断过去涨跌对当前走势的影响,本文只做了简单分析,未发现明显规律
3. 开盘5分钟后的一段时间股价走势
采用分位数分组的方式按开盘价分组,观察不同分组的后续收益情况。统计发现,开盘涨幅较大的股票后续继续上涨的概率更大,存在明显的动量现象。
三、结果
开盘价和过去涨跌热图
开盘价分组收益情况
存在明显的单调性
3.收益率
基准收益:16%
策略收益:80%
最大回撤:14%
从收益曲线可以看出,基本的涨跌走势和大盘一致,但仅此一个因子存在明显超额收益。
四、更多尝试
用上午最后五分钟的动量判断下午走势,效果更佳。
结果如下:
热图
单调性
收益率
基准收益:16%
策略收益:363%
最大回撤:4.6%
结果来看,无论是收益率还是回撤表现都非常优秀。
import pandas as pd
import numpy as np
from jqdata import *
import datetime
import warnings
import pickle
import matplotlib.pyplot as plt
import seaborn as sns
warnings.filterwarnings('ignore')
start_date = '2017-01-01'
end_date = '2019-09-05'
train_percent = 0.5
sel_percent = [0.8,0.98]
cut_layer = 10
stocks = get_index_stocks('000300.XSHG')
def get_tradeday_list(start, end, frequency=None, count=None):
'''
获取日期列表
input:
start:str or datetime,起始时间,与count二选一
end:str or datetime,终止时间
frequency:
str: day,month,quarter,halfyear,默认为day
int:间隔天数
count:int,与start二选一,默认使用start
'''
if isinstance(frequency, int):
all_trade_days = get_trade_days(start, end)
trade_days = all_trade_days[::frequency]
days = [datetime.datetime.strftime(i, '%Y-%m-%d') for i in trade_days]
return days
if count != None:
df = get_price('000001.XSHG', end_date=end, count=count)
else:
df = get_price('000001.XSHG', start_date=start, end_date=end)
if frequency == None or frequency == 'day':
days = df.index
else:
df['year-month'] = [str(i)[0:7] for i in df.index]
if frequency == 'month':
days = df.drop_duplicates('year-month').index
elif frequency == 'quarter':
df['month'] = [str(i)[5:7] for i in df.index]
df = df[(df['month'] == '01') | (df['month'] == '04') | (df['month'] == '07') | (df['month'] == '10')]
days = df.drop_duplicates('year-month').index
elif frequency == 'halfyear':
df['month'] = [str(i)[5:7] for i in df.index]
df = df[(df['month'] == '01') | (df['month'] == '06')]
days = df.drop_duplicates('year-month').index
trade_days = [datetime.datetime.strftime(i, '%Y-%m-%d') for i in days]
return trade_days
def find_max_drawdown(returns):
#returns 为cumprod收益
# 定义最大回撤的变量
result = 0
# 记录最高的回报率点
historical_return = 0
# 遍历所有日期
for i in range(len(returns)):
# 最高回报率记录
historical_return = max(historical_return, returns[i])
# 最大回撤记录
drawdown = 1 - (returns[i]) / (historical_return)
# 记录最大回撤
result = max(drawdown, result)
# 返回最大回撤值
return result
date_list = get_tradeday_list(start=start_date,end=end_date)
def get_profit_minutes_period(stocks,date,n=5,next_n=120):
'''
计算date前一天最后一段时间的动量收益
注意:获取的数据是输入时间前一天的数据
input:
stocks:输入股票列表
date:时间,数据为前一天
n:开盘收益计算时间长度
next_n:开盘后收益计算长度
'''
print(date)
price = get_price(stocks,end_date=date,frequency='1m',count=n+next_n,fields=['close'])['close']
l = len(price.shape)
if l > 1:
profit_open = price.pct_change(n-1)
profit_open = profit_open.iloc[n]
profit_next = price.pct_change(next_n)
profit_next = profit_next.iloc[-1]
profit = pd.concat([profit_open,profit_next],axis=1)
profit.columns = ['open_profit','next_profit']
else:
profit_open = price.pct_change(n)
profit_open = profit_open.iloc[n]
profit_open = pd.DataFrame([profit_open],index=[stocks])
profit_next = price.pct_change(next_n - 1)
profit_next = profit_next.iloc[-1]
profit_next = pd.DataFrame([profit_next],index=[stocks])
profit = pd.concat([profit_open,profit_next],axis=1)
profit.columns = ['open_profit','next_profit']
return profit
def get_open_profit_minutes_period(stocks,date,n=5,next_n=120):
'''
计算date前一天开盘的动量收益
注意:获取的数据是输入时间前一天的数据
input:
stocks:输入股票列表
date:时间,数据为前一天
n:开盘收益计算时间长度
next_n:开盘后收益计算长度
'''
price = get_price(stocks,end_date=date,frequency='1m',count=240,fields=['close'])['close']
l = len(price.shape)
if l > 1:
profit_open = price.pct_change(n)
profit_open = profit_open.iloc[n]
profit_next = price.pct_change(next_n)
profit_next = profit_next.iloc[n+next_n+1]
profit = pd.concat([profit_open,profit_next],axis=1)
profit.columns = ['open_profit','next_profit']
else:
profit_open = price.pct_change(n)
profit_open = profit_open.iloc[n]
profit_next = price.pct_change(next_n)
profit_next = profit_next.iloc[n+next_n+1]
profit_open = pd.DataFrame([profit_open],index=[stocks])
profit_next = pd.DataFrame([profit_next],index=[stocks])
profit = pd.concat([profit_open,profit_next],axis=1)
profit.columns = ['open_profit','next_profit']
return profit
def get_day_profit_backward(stocks,end_date,start_date=None,count=3):
'''
向前计算收益率,得到的收益率是输入时间end_date向前计算,不包括当天
input:
stocks:list or Series,股票代码
start_date:开始时间
end_date:结束时间
count:与start_date二选一,向前取值个数
pre_num:int,向后计算的天数
output:
profit:dataframe,index为日期,columns为股票代码,values为收益率
'''
if count == -1:
price = get_price(stocks,start_date,end_date,fields=['close'])['close']
else:
price = get_price(stocks,end_date=end_date,count=count+1,fields=['close'])['close']
profit = price.pct_change(count-1)
profit = profit.iloc[-2]
if isinstance(profit,pd.Series):
profit = profit.to_frame()
else:
profit = pd.DataFrame([profit],index=[stocks])
profit.columns = ['back_profit']
return profit
def get_open_and_backward_profit(stocks,date_list,n=5,next_n=60,count=3):
'''
注意:时间对齐
'''
l = len(date_list)
dic = {}
for d in range(l - 1):
date = date_list[d+1]
open_profit = get_open_profit_minutes_period(stocks,date,n,next_n)
date = date_list[d]
backward_profit = get_day_profit_backward(stocks,date,count)
profit = pd.merge(open_profit,backward_profit,left_index=True,right_index=True,how='inner')
dic[date] = profit
return dic
'''
dic_res_5_60_3 = get_open_and_backward_profit(stocks,date_list,n=5,next_n=60,count=3)
with open('open_and_backward_profit.pkl','wb') as pk_file:
pickle.dump(dic_res_5_60_3,pk_file)
'''
"\ndic_res_5_60_3 = get_open_and_backward_profit(stocks,date_list,n=5,next_n=60,count=3)\nwith open('open_and_backward_profit.pkl','wb') as pk_file:\n pickle.dump(dic_res_5_60_3,pk_file)\n"
dic_res_5_60_3_hs300 = get_open_and_backward_profit(stocks,date_list,n=5,next_n=120,count=3)
with open('movement_5_120_3_open.pkl','wb') as pk_file:
pickle.dump(dic_res_5_60_3_hs300,pk_file)
len(dic_res_5_60_3_hs300)
653
with open('movement_5_120_3_open.pkl','rb') as pk_file:
dic_res = pickle.load(pk_file)
def combine_data(dic_res,sel_percent):
'''
字典数据按时间轴合并
'''
keys = list(dic_res.keys())
data_list = []
for key in keys:
data = dic_res[key]
data_list.append(data)
all_data = pd.concat(data_list)
print(len(all_data))
test_data = all_data.dropna()
new_col = ['back_profit','open_profit','next_profit']
all_data = all_data[new_col]
all_data.index = np.arange(len(all_data))
#删除开盘停牌股票
sel_data = all_data[all_data['open_profit'] == 0].index
all_data = all_data.drop(sel_data,axis=0)
length = len(all_data)
'''
#获取训练数据和测试数据
cut_point = int(train_percent * length)
print(cut_point)
train_data = all_data[:cut_point]
test_data = all_data[cut_point:]
'''
#剪切中间部分
start_point = int(sel_percent[0] * length)
end_point = int(sel_percent[1] * length)
sel_data = all_data[start_point:end_point]
return sel_data
def cut_data(data,n):
'''
将数据分层,基于分位数,最后一列作为收益不进行分层
input:
data:dataframe or series, 输入数据
n: 分层数
'''
f = 1 / n
l = []
for i in range(n):
l.append(f*(i+1))
q = data.quantile(l)
qv = q.values
shape = qv.shape
col = data.columns
for i in range(shape[1] - 1): #最后一层收益不分层
for j in range(shape[0]):
data[col[i]][data[col[i]] <= qv[j][i]] = j + 1
return data.dropna()
#单维度分析
def calculate_IC(factor,profit,method='pearson'):
'''
input:
factor: 因子值
profit:收益值
me t hod:默认计算pearson相关系数
输出:
i c值和对应的pvalue
'''
if method == 'pearson':
ic,pvalue = st.spearmanr(factor,profit)
else:
ic,pvalue = st.pearsonr(factor,profit)
return ic,pvalue
def draw_heatmap(data):
'''
输入的数据必须是三列,最后一列计算均值,前两列分组
'''
col = data.columns
#group_res = data.groupby([col[0],col[1]]).count()
group_res = data.groupby([col[0],col[1]]).mean()
group_res = group_res.unstack(0).fillna(0)
plt.figure(figsize=(10,6))
ax = sns.heatmap(group_res)
plt.show()
def draw_bar(data):
'''
输入data: 两列,第一列为factor值,第二列为收益值
'''
col = data.columns
group_data = data.groupby(col[0]).mean()
y_data = group_data[col[1]].values
index = np.arange(1,len(group_data)+1)
plt.figure(figsize=(8,4))
plt.bar(index,y_data)
plt.title('profit bar')
plt.xlabel(col[0])
plt.ylabel(col[1])
plt.xticks(index,fontsize=15)
return group_data
sel_data = combine_data(dic_res,sel_percent)
cut_res = cut_data(sel_data,cut_layer)
draw_heatmap(cut_res)
d = cut_res[['open_profit','next_profit']]
draw_bar(d)
back_next = cut_res[['back_profit','next_profit']]
t = draw_bar(back_next)
195900
#对每一天的数据分组,多天数据合并
def get_day_profit(day_data,date,sel_n):
'''
获取每天的收益列表,
'''
day_data = day_data.dropna()
new_col = ['back_profit','open_profit','next_profit']
day_data = day_data[new_col]
#删除开盘没有涨跌的股票
sel_data = day_data[day_data['open_profit'] == 0].index
day_data = day_data.drop(sel_data,axis=0)
cut_day_data = cut_data(day_data,cut_layer)
col = cut_day_data.columns
#选出对应股票
#sel_day_data = cut_day_data[col[0]][cut_day_data[col[0]] == sel_n]
#sel_day_stocks = list(sel_day_data.index)
group_day_data = cut_day_data.groupby(['open_profit']).mean()
day_profit = group_day_data.iloc[sel_n-1,-1]
day_profit = pd.DataFrame([day_profit],index=[date],columns=['profit'])
return day_profit
keys = list(dic_res.keys())
day_data = dic_res[keys[4]]
get_day_profit(day_data,keys[4],10)
profit | |
---|---|
2017-01-09 | 0.005867 |
#选择每天的分层数据中收益较高的层
sel_n = 10
day_profit_l = []
for key in keys:
day_data = dic_res[key]
day_profit = get_day_profit(day_data,key,sel_n)
day_profit_l.append(day_profit)
profit_df = pd.concat(day_profit_l)
index = list(profit_df.index)
base_start_date = index[0]
base_end_date = index[-1]
base_price = get_price('000300.XSHG',start_date=base_start_date,end_date = base_end_date,fields=['close'])['close']
profit_df['cum_profit'] = (profit_df['profit'] + 1).cumprod()
#计算基准收益,以沪深300为准
base_price = get_price('000300.XSHG',start_date=base_start_date,end_date = base_end_date,fields=['close'])['close']
base_pofit = base_price.pct_change().dropna()
base_profit_cump = (base_pofit + 1).cumprod()
index = list(base_profit_cump.index)
new_index = [datetime.datetime.strftime(i,'%Y-%m-%d') for i in index ]
base_profit_cump.index = new_index
base_profit_cump.name = 'base_profit'
profit_df_combine = pd.concat([profit_df,base_profit_cump],axis=1).dropna()
print(profit_df_combine.tail())
draw_profit = profit_df_combine[['cum_profit','base_profit']]
draw_profit.plot(figsize=(15,8))
plt.show()
base_profit_show = profit_df_combine['base_profit'][-1]
stratage_profit_show = profit_df_combine['cum_profit'][-1]
print('base profit is: %s'%(str(round((base_profit_show-1)*100,2)) + '%'))
print('base profit is: %s'%(str(round((stratage_profit_show-1)*100,2)) + '%'))
max_drawdown = find_max_drawdown(profit_df_combine['cum_profit'])
print('max drawdown is: %s' %(str(round(max_drawdown*100,2)) + '%'))
profit cum_profit base_profit 2019-08-29 0.004259 1.765107 1.134030 2019-08-30 -0.008628 1.749877 1.136843 2019-09-02 0.005525 1.759545 1.151423 2019-09-03 0.006958 1.771789 1.153006 2019-09-04 0.015245 1.798800 1.162697
base profit is: 16.27% base profit is: 79.88% max drawdown is: 14.16%
本社区仅针对特定人员开放
查看需注册登录并通过风险意识测评
5秒后跳转登录页面...
移动端课程