请 [注册] 或 [登录]  | 返回主站

量化交易吧 /  量化平台 帖子:3364470 新帖:36

精英任务公开评审——作者:wunderkindye

外汇老老法师发表于:8 月 15 日 14:00回复(1)

附录:因子检查策略代码¶

用于因子策略回测效果检查

'''
根据研究结论编写的策略,由于研究中多空组合的收益中,空头贡献了重要的部分(约50%),由于回测中不能做空,所以策略的收益相对研究中较低。
by wunderkindye
'''
'''
根据聚宽高频因子挖掘大赛比赛专用模板修改
初始资金:2000000
建议回测时间范围
每日调仓 一年 回测日期:20180720-20190720
每周调仓 三年 回测日期:20160720-20190720
每月调仓 五年 回测日期:20140720-20190720

股票池:中证500
每日持仓:数量固定为股票池的20只,持仓均为等权重持有
换仓时间:默认14:50
交易成本:不考虑滑点,印花税1‰,佣金2.5‱、最低5元
'''

# 导入函数库
from jqdata import *
import numpy as np
import pandas as pd
import jqfactor

################################################# 以下内容根据研究因子内容定义 ########################################################

# 定义因子
def calc_factor(context):
    '''
    用户自定义因子,要求返回一个 Series,index为股票code,value为因子值
    我们会买入「因子值最小」的20只,如果您想使用买入「因子值最大」的20只股票,只需将您的结果「乘以-1.0」即可,详见函数下方 return 部分
    '''
    # 获取股票池,g.stock_pool为因子挖掘的对象股票池,用户不可对此股票池进行二次筛选
    stocks = g.stock_pool
    # 获取当前时间
    now  =  context.current_dt
    # 获取数据
    close = get_price(stocks,end_date=context.previous_date,count=21,fields=['close'])['close'] 
    money = get_price(stocks,end_date=context.previous_date,count=21,fields=['money'])['money']
    cap = get_fundamentals(query(
         valuation.circulating_market_cap
      ).filter(
          valuation.code.in_(stocks)
      ), date=context.previous_date)
    far = close.iloc[-1,:]/close.iloc[0,:] - 1
    #far = sum(close.iloc[:,:])/(21*close.iloc[-1,:])-1 研报中的优化思路:均线价格代替期末期初价格差,然而实证检验效果不佳
    money = (sum(money.iloc[:,:]))
    cap = pd.Series(cap['circulating_market_cap'].values, index=far.index)
    result = (far.iloc[:]/(money.iloc[:]/(cap.iloc[:]*100000000)))
    return result
    

# 开盘前运行函数
def before_market_open(context):
    '''
    盘后运行函数,可选实现
    '''
    pass

## 收盘后运行函数
def after_market_close(context):
    '''
    盘后运行函数,可选实现
    '''
    pass



################################################# 以下内容除设置运行周期,其他地方不用修改 ########################################################

# 初始化函数,设定基准等等
def initialize(context):
    # 设定500等权作为基准
    g.benchmark = '000982.XSHG'
    set_benchmark(g.benchmark)
    # 开启动态复权模式(真实价格)
    set_option('use_real_price', True)
    ### 股票相关设定 ###
    # 股票类每笔交易时的手续费
    set_order_cost(OrderCost(close_tax=0.001, open_commission=0.00025, close_commission=0.00025, min_commission=5),type='stock')
    # 滑点
    set_slippage(FixedSlippage(0.0))
    # 初始化因子设置
    factor_analysis_initialize(context)
    # 定义股票池
    set_stockpool(context)
    # 运行函数(reference_security为运行时间的参考标的;传入的标的只做种类区分,因此传入'000300.XSHG'或'510300.XSHG'是一样的)
    run_daily(set_stockpool, time='before_open', reference_security='000300.XSHG')
    run_daily(before_market_open, time='before_open', reference_security='000300.XSHG')
    
    #设置策略交易时间间隔
    #run_daily(trade, time='14:50', reference_security='000300.XSHG')
    run_weekly(trade,1, time='14:50', reference_security='000300.XSHG')
    #run_monthly(trade,1, time='14:50', reference_security='000300.XSHG')
    
    run_daily(after_market_close, time='after_close', reference_security='000300.XSHG')

# 定义股票池
def set_stockpool(context):
    # 获取股票池
    stocks = get_index_stocks(g.benchmark,context.previous_date)
    paused_series = get_price(stocks,end_date=context.current_dt,count=1,fields='paused')['paused'].iloc[0]
    # g.stock_pool 为因子挖掘的对象股票池,用户不可对此股票池进行二次筛选
    g.stock_pool =  paused_series[paused_series==False].index.tolist()

# 定义需要用到的全局变量
def factor_analysis_initialize(context):
    # g.weight_method 为加权方式, "avg"按平均加权
    g.weight_method = "avg"
    weight_method_model = {"avg": "平均加权"}
    # 持仓股票数量
    g.buy_num = 20
    # g.sell为卖出股票权重列表
    g.sell = pd.Series(dtype=float)
    # g.buy为买入股票权重列表
    g.buy = pd.Series(dtype=float)
    #g.ind为行业分类
    g.ind = 'jq_l1'
    # g.d 为获取昨天的时间点
    g.d = context.previous_date

# 对因子进行分析计算出每日买入或卖出的股票
def fac(context):
    # 获取因子值
    far = calc_factor(context)
    # 买入股票池
    try:
        buy = far.sort_values(ascending=True).index.tolist()[:g.buy_num]
    except:
        buy = far.order(ascending=True).index.tolist()[:g.buy_num]
    # 买卖股票权重
    if g.weight_method == "avg":
        buy_weight = pd.Series(1. / len(buy), index=buy)
    else:
        raise ValueError('invalid weight_method %s', weight_method)

    return buy_weight

#股票交易
def trade(context):
    # 计算买入卖出的股票和权重
    try:
        factor_analysis_initialize(context)
        g.buy = fac(context)
    except ValueError:
        if "Bin edges must be unique" in str(e):
            log.error("计算因子值过程出错!")
        else:
            raise
    
    for s in context.portfolio.positions.keys():
        if s not in g.buy.index:
            order_target_value(s, 0)
    

    long_cash = context.portfolio.total_value
    for s in g.buy.index:
        order_target_value(s, g.buy.loc[s] * 0.98 * long_cash)

# 买入股票
def buy(context):
    # 计算买入卖出的股票和权重
    try:
        factor_analysis_initialize(context)
        g.buy = fac(context)
    except ValueError:
        if "Bin edges must be unique" in str(e):
            log.error("计算因子值过程出错!")
        else:
            raise
    long_cash = context.portfolio.total_value
    for s in g.buy.index:
        order_target_value(s, g.buy.loc[s] * 0.98 * long_cash)

# 卖出股票
def sell(context):
    for s in context.portfolio.positions.keys():
        order_target_value(s, 0)
        
        

请先从下面内容开始¶

因子分析基础模板¶

#导入需要的数据库
from jqfactor import *
from jqdata import *
import pandas as pd
import warnings  
warnings.filterwarnings('ignore') 

#获取日期列表
def get_tradeday_list(start,end,frequency=None,count=None):
    if count != None:
        df = get_price('000001.XSHG',end_date=end,count=count)
    else:
        df = get_price('000001.XSHG',start_date=start,end_date=end)
    if frequency == None or frequency =='day':
        return df.index
    else:
        df['year-month'] = [str(i)[0:7] for i in df.index]
        if frequency == 'month':
            return df.drop_duplicates('year-month').index
        elif frequency == 'quarter':
            df['month'] = [str(i)[5:7] for i in df.index]
            df = df[(df['month']=='01') | (df['month']=='04') | (df['month']=='07') | (df['month']=='10') ]
            return df.drop_duplicates('year-month').index
        elif frequency =='halfyear':
            df['month'] = [str(i)[5:7] for i in df.index]
            df = df[(df['month']=='01') | (df['month']=='06')]
            return df.drop_duplicates('year-month').index 

===初始化====¶

# 设置起止时间
start='2018-07-20'
end='2019-07-20'
# 设置调仓周期
periods=(5,10,20)
# 设置分层数量
quantiles=5
#获取日期列表
date_list = get_tradeday_list(start=start,end=end,count=None)#获取回测日期间的所有交易日

===原始计算因子数据===¶

  • 进行因子值函数定义
  • 循环日期获取因子值

定义要计算的动量因子¶

研报中提出,A股市场的反转现象是由于散户比例高,导致市场的非理性与羊群效应,因此股票的价格变化往往存在过度变化的情况,后续会反向调整。

继而,研报中提出的因子优化的思路之一,是通过中性化(提取横截面回归残差),去除动量/反转因子中含有的流动性因子(流动性因子作为散户数量的代理变量,散户越多,该股票被交易的频率越高,从而有较高的流动性。

原来的模板中也在注释中给出了中性化处理的代码,但经检验,中性化处理对因子IC,IR值的改善贡献不大。仔细思考,中性化处理(提取截面回归残差)其实是基于线性回归模型,即假设因变量(21天前后股票价格差)和自变量(流动性/散户交易占比)呈线性关系。但其实这样的假设并不太合理,直觉上,散户参与交易不应固定地使股票21天后的价格比21天前的价格更高或更低,而应是放大21天前后的价格差。本来上涨的股票因为散户的参与涨的更多,本来下跌的股票下跌更多。

对应的,在本研究中替代原来的中性化处理,用“21天前后价格差/21天平均换手率之和”作为改良后的因子。

def factor_cal(pool,date):
    close = get_price(pool,end_date=date,count=21,fields=['close'])['close']#获取收盘价
    money = get_price(pool,end_date=date,count=21,fields=['money'])['money']#获取交易额
    cap = get_fundamentals(query(
         valuation.circulating_market_cap
      ).filter(
          valuation.code.in_(pool)
      ), date=date) #获取股票流通市值,用于计算换手率用
    far = close.iloc[-1,:]/close.iloc[0,:] - 1 #21天前后价差
    #far = sum(close.iloc[:,:])/(21*close.iloc[-1,:])-1 用于研报中的另一种改良思路,用平均价格代替时间点价格,但检验发现效果不佳
    money = (sum(money.iloc[:,:])/21.) #计算平均换手率
    cap = pd.Series(cap['circulating_market_cap'].values, index=far.index)
    result = (far.iloc[:]/(money.iloc[:]/(cap.iloc[:]*100000000))) #计算因子值:股价差/平均换手率
    return result
#定义一个空的dataframe记录因子值
factor_df = pd.DataFrame()
#循环计算给定日期范围的因子值
mark = 1
print (len(date_list))
for d in date_list:
    try: #获取流通市值的函数在零星几天会失败,因此这里用try处理
        pool = get_index_stocks('000905.XSHG',date=d)
        far = factor_cal(pool,d)
        if mark == 1:
            factor_df = far
            mark = 0
        else:
            factor_df = pd.concat([factor_df,far],axis=1)
    except:
        date_list=date_list.drop(d)
        continue
#将columns更改为可以日期标签
factor_df.columns = date_list
factor_df.head(3)
229
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
2018-07-20 00:00:00 2018-07-23 00:00:00 2018-07-24 00:00:00 2018-07-25 00:00:00 2018-07-26 00:00:00 2018-07-27 00:00:00 2018-07-30 00:00:00 2018-07-31 00:00:00 2018-08-01 00:00:00 2018-08-02 00:00:00 2018-08-03 00:00:00 2018-08-06 00:00:00 2018-08-07 00:00:00 2018-08-08 00:00:00 2018-08-09 00:00:00 2018-08-10 00:00:00 2018-08-13 00:00:00 2018-08-14 00:00:00 2018-08-15 00:00:00 2018-08-16 00:00:00 2018-08-17 00:00:00 2018-08-20 00:00:00 2018-08-21 00:00:00 2018-08-22 00:00:00 2018-08-23 00:00:00 2018-08-24 00:00:00 2018-08-27 00:00:00 2018-08-28 00:00:00 2018-08-29 00:00:00 2018-08-30 00:00:00 2018-08-31 00:00:00 2018-09-03 00:00:00 2018-09-04 00:00:00 2018-09-05 00:00:00 2018-09-06 00:00:00 2018-09-07 00:00:00 2018-09-10 00:00:00 2018-09-11 00:00:00 2018-09-12 00:00:00 2018-09-13 00:00:00 ... 2019-05-23 00:00:00 2019-05-24 00:00:00 2019-05-27 00:00:00 2019-05-28 00:00:00 2019-05-29 00:00:00 2019-05-30 00:00:00 2019-05-31 00:00:00 2019-06-03 00:00:00 2019-06-04 00:00:00 2019-06-05 00:00:00 2019-06-06 00:00:00 2019-06-10 00:00:00 2019-06-11 00:00:00 2019-06-12 00:00:00 2019-06-13 00:00:00 2019-06-14 00:00:00 2019-06-18 00:00:00 2019-06-19 00:00:00 2019-06-20 00:00:00 2019-06-21 00:00:00 2019-06-24 00:00:00 2019-06-25 00:00:00 2019-06-26 00:00:00 2019-06-27 00:00:00 2019-06-28 00:00:00 2019-07-01 00:00:00 2019-07-02 00:00:00 2019-07-03 00:00:00 2019-07-04 00:00:00 2019-07-05 00:00:00 2019-07-08 00:00:00 2019-07-09 00:00:00 2019-07-10 00:00:00 2019-07-11 00:00:00 2019-07-12 00:00:00 2019-07-15 00:00:00 2019-07-16 00:00:00 2019-07-17 00:00:00 2019-07-18 00:00:00 2019-07-19 00:00:00
000006.XSHE -11.612745 -8.822291 -2.804284 1.039448 2.607539 4.366568 10.592364 4.543292 1.076872 1.956700 3.622247 -0.443105 1.122533 3.695890 2.978716 5.902382 3.093861 4.125538 0.824253 0.819768 -2.380844 -2.780592 -5.464474 -7.415165 -6.221536 -10.484775 -7.782507 -6.184067 -5.14282 0.853220 -1.999657 -0.293819 -2.905727 -5.116281 -9.219400 -14.772072 -15.371927 -16.109292 -13.156837 -10.643322 ... -22.536138 -20.438054 -16.099421 -11.853769 -12.006430 -13.915655 -14.650752 -2.212839 -6.991088 -4.903990 -4.048379 -6.514469 -0.981977 0.000000 -3.607311 -5.789223 2.651802 1.074806 6.495696 13.550430 9.456650 -1.048775 1.551917 4.205654 6.588853 11.996389 10.980852 12.245196 14.244738 15.079810 4.726903 -1.164855 -1.989418 -1.243770 0.849276 -1.249118 1.275299 -0.431189 -8.170143 -4.200764
000008.XSHE NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN -884.535488 -535.198174 -42.729120 -37.554268 -34.645050 -31.211878 -30.726857 -30.329145 -30.318045 -28.426219 -26.891679 -26.122216 -25.213660 -21.442916 -19.349874 -18.245008 -17.57392 -17.011913 -16.570262 -11.336435 -3.525320 4.981456 7.240363 15.275918 14.981741 12.870928 16.353180 17.322943 ... -17.785247 -19.157550 -19.796848 -15.740444 -17.928318 -10.215782 -14.144714 -6.180066 -8.580232 -6.868011 -8.704236 -10.870437 -6.828312 -5.710932 -7.610949 -9.765632 -4.221317 -3.026805 0.879575 8.069342 9.167814 3.106551 0.000000 2.754585 -2.638563 3.741663 2.816808 4.759953 4.332258 6.335657 -2.211424 -4.707778 -5.640526 -7.845485 -5.341588 -4.445708 -2.249854 -6.465664 -9.892760 -6.043667
000009.XSHE 7.304329 9.621554 10.216285 11.478340 13.684456 6.307995 7.353449 5.643813 6.079397 1.680724 -0.422693 -8.224606 -5.504451 -2.617163 -3.042096 -3.116585 -6.196279 -13.189073 -16.236953 -12.261096 -19.714641 -19.424256 -22.362643 -23.346523 -24.970627 -25.172207 -15.846900 -19.024696 -16.33447 -8.555411 -4.973640 0.000000 -4.968825 -8.245219 -17.030172 -16.461075 -22.367305 -20.388025 -13.567214 -7.795580 ... -9.044784 -9.032605 -8.920340 -4.412703 -3.079215 0.781228 -5.009636 -3.251170 -5.016200 -2.951018 -2.851141 -3.493290 0.414500 1.037941 -0.817814 -4.771357 -0.667633 -4.075817 1.166682 0.470331 2.596835 3.216418 0.000000 -2.641624 -3.006762 1.302794 5.348396 4.022485 3.792998 9.430496 0.000000 -3.931449 -5.412028 -6.934928 -3.835362 -0.613031 1.247859 -1.549943 -6.791388 -7.353609

===进行因子数据优化===¶

  • 标准化
#数据清洗、包括去极值、标准化、中性化等,并加入y值
for date in date_list:
    #对数据进行处理、标准化、去极值、中性化
    #factor_df = winsorize_med(factor_df, scale=3, inclusive=True, inf2nan=True, axis=0) #中位数去极值处理
    se = standardlize(factor_df[date], inf2nan=True) #对每列做标准化处理
    factor_df[date] = se
#进行转置,调整为分析可用的格式
factor_df = factor_df.T
factor_df.head()
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
000006.XSHE 000008.XSHE 000009.XSHE 000012.XSHE 000021.XSHE 000025.XSHE 000027.XSHE 000028.XSHE 000031.XSHE 000039.XSHE 000049.XSHE 000060.XSHE 000061.XSHE 000062.XSHE 000066.XSHE 000078.XSHE 000089.XSHE 000090.XSHE 000156.XSHE 000158.XSHE 000301.XSHE 000400.XSHE 000401.XSHE 000418.XSHE 000426.XSHE 000488.XSHE 000501.XSHE 000513.XSHE 000519.XSHE 000528.XSHE 000536.XSHE 000537.XSHE 000541.XSHE 000543.XSHE 000547.XSHE 000552.XSHE 000553.XSHE 000559.XSHE 000563.XSHE 000564.XSHE ... 601990.XSHG 603000.XSHG 603019.XSHG 603025.XSHG 603056.XSHG 603077.XSHG 603169.XSHG 603188.XSHG 603198.XSHG 603225.XSHG 603228.XSHG 603233.XSHG 603328.XSHG 603355.XSHG 603369.XSHG 603377.XSHG 603444.XSHG 603486.XSHG 603501.XSHG 603515.XSHG 603517.XSHG 603556.XSHG 603568.XSHG 603569.XSHG 603589.XSHG 603650.XSHG 603658.XSHG 603659.XSHG 603712.XSHG 603766.XSHG 603806.XSHG 603816.XSHG 603866.XSHG 603868.XSHG 603877.XSHG 603883.XSHG 603885.XSHG 603888.XSHG 603899.XSHG 603939.XSHG
2018-07-20 -0.870088 NaN 0.472244 -0.470108 0.875667 -0.014138 0.411904 -1.333933 -1.199218 -0.798022 0.405831 NaN -2.210211 1.041722 0.505837 -1.121608 0.779599 -1.656187 -2.885027 -1.141462 NaN 0.555043 0.226158 -2.066377 NaN -0.431978 -0.972066 0.111684 0.476672 0.053055 -0.285180 NaN -0.310197 1.440075 0.015036 -0.543669 -0.091906 NaN -0.731492 NaN ... NaN -0.471730 0.722339 1.236778 -0.077640 0.629311 0.527204 1.036853 -0.584802 0.246333 0.920087 NaN 4.106038 3.213797 -0.746324 -0.613145 -0.115925 NaN NaN -0.545252 NaN -0.004294 -1.070643 0.198972 -0.754378 NaN -0.313076 -0.148719 NaN 0.522567 0.869291 -0.345579 NaN 0.179888 0.240653 0.442496 -1.475229 -0.210908 -0.568581 NaN
2018-07-23 -0.861006 NaN 0.412071 -0.170145 0.886169 -0.164529 0.742954 -1.634026 -0.984491 -0.661180 0.222060 NaN -1.256626 1.348840 0.429924 -1.235356 0.376356 -1.653100 -2.823700 -1.302780 NaN 0.650629 0.332597 -1.812079 NaN -0.378172 -0.804527 -0.379619 0.269545 -0.074263 -0.192971 NaN -0.095334 1.743807 0.108903 -0.449485 -0.192226 NaN -1.532472 NaN ... NaN -0.346953 0.551535 2.405893 -0.299463 0.447682 0.434596 1.374870 -1.094550 0.196579 0.746806 NaN 3.008670 2.413048 -1.188156 -0.680031 -0.181470 NaN NaN -0.732495 NaN -0.481148 -0.752212 0.045561 -1.179439 NaN -0.698048 -0.346096 NaN 0.980939 1.481784 -0.666809 NaN 0.129736 -0.444896 -0.166735 -0.542082 -0.171055 -1.657876 NaN
2018-07-24 -0.608539 NaN 0.271694 0.155494 0.376217 -0.312353 2.432267 -1.362854 -0.233866 -0.418961 -0.017016 NaN -0.749284 0.934951 -0.004881 -1.242849 0.581258 -0.390872 -1.509734 -1.421760 NaN 0.688310 0.700782 -1.487865 NaN -0.229100 -0.929626 -0.422155 0.009714 -0.286290 -0.143150 NaN 0.268918 1.235722 -0.088122 -0.130984 -0.372996 NaN -2.000903 NaN ... NaN -0.141132 0.162645 2.345000 -0.471836 0.392809 -0.160415 0.904667 -0.604277 0.044091 0.404300 NaN 2.412934 2.706682 -1.273929 -0.725280 -0.323685 NaN NaN -0.561169 NaN -0.630317 -1.060128 -0.156635 -0.969306 NaN -0.753179 -0.568804 NaN 0.563373 2.462729 -0.625769 NaN 0.091430 -1.124914 -0.876723 -0.457707 -0.295706 -1.162420 NaN
2018-07-25 -0.445218 NaN 0.290948 0.419781 0.312331 -0.291990 1.959376 -1.327793 -0.060950 -0.433840 -0.132887 NaN -0.930202 0.884997 -0.072762 -1.290052 0.698484 -0.651253 -0.911961 -1.244367 NaN 0.740520 0.811219 -1.671038 NaN -0.413167 -0.878480 -0.067857 -0.040785 -0.228683 -0.074149 NaN 0.329078 1.372648 -0.109476 -0.276359 -0.494766 NaN -1.081837 NaN ... NaN -0.003308 0.071776 3.129088 -0.610164 0.437925 0.997283 1.085465 -0.351921 -0.090329 0.197536 NaN 1.719629 3.027563 -1.101706 -0.681717 -0.332002 NaN NaN -0.598471 NaN -0.657594 -0.313263 -0.339560 -0.746412 NaN -0.665355 -0.668788 NaN 0.413456 0.893097 -0.614248 NaN 0.633211 -1.307281 -0.854785 -0.292175 -0.277199 -0.976616 NaN
2018-07-26 -0.408908 NaN 0.318737 0.388727 0.124369 -0.413213 1.860660 -1.263172 0.884298 -0.550724 -0.289109 NaN 0.058308 1.132202 -0.270724 -1.124162 0.554888 -0.459622 -0.368961 -1.114500 NaN 0.849258 0.625598 -1.739112 NaN -0.591635 -0.848536 0.237046 -0.115913 -0.315208 0.335211 NaN 0.344520 1.413403 -0.032533 -0.364395 -0.594669 NaN -0.844878 NaN ... NaN 0.344744 -0.153229 1.780345 -0.609763 0.613902 0.557880 0.981468 -0.189435 -0.339548 0.091403 NaN 1.186661 0.868546 -1.191273 -0.599561 -0.528395 NaN NaN -0.471456 NaN -0.888867 -0.639720 -0.272861 -0.763325 NaN -0.517306 -0.656294 NaN 0.774216 -0.414850 -0.859926 NaN 0.244860 -1.359304 -1.098743 -0.466743 -0.277365 -0.711164 NaN

因子效果检查¶

#使用获取的因子值进行单因子分析
far = analyze_factor(factor=-factor_df, start_date=date_list[0], end_date=date_list[-1], weight_method='avg', industry='jq_l1', quantiles=quantiles, periods=periods,max_loss=0.3)

IC分析

# 打印信息比率(IC)相关表
far.plot_information_table(group_adjust=False, method='rank')
IC 分析
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
period_5 period_10 period_20
IC Mean 0.059 0.075 0.061
IC Std. 0.151 0.147 0.149
IR 0.389 0.513 0.409
t-stat(IC) 5.889 7.764 6.184
p-value(IC) 0.000 0.000 0.000
IC Skew -0.209 -0.145 0.500
IC Kurtosis -0.312 0.159 0.157

分组收益

# 画各分位数平均收益图
far.plot_quantile_returns_bar(by_group=False, demeaned=0, group_adjust=False)
<Figure size 432x288 with 0 Axes>
#调用因子分析方法,进行因子信息全览,主要关注做多最大分位做空最小分位的收益
far.create_full_tear_sheet(demeaned=False, group_adjust=False, by_group=False, turnover_periods=None, avgretplot=(5, 15), std_bar=False)
分位数统计
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
min max mean std count count %
factor_quantile
1 -11.202149 -0.056701 -1.099604 0.969796 22694 20.045578
2 -0.714156 0.121010 -0.261042 0.176513 22628 19.987281
3 -0.391428 0.455564 0.039860 0.161549 22598 19.960782
4 -0.071958 0.766691 0.316832 0.211695 22625 19.984631
5 -0.055103 22.282995 1.005523 1.248903 22667 20.021729
-------------------------

收益分析
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
period_5 period_10 period_20
Ann. alpha -0.547 -0.311 -0.166
beta 0.167 0.142 0.195
Mean Period Wise Return Top Quantile (bps) 3.773 5.751 3.757
Mean Period Wise Return Bottom Quantile (bps) -6.920 -6.021 -5.089
Mean Period Wise Spread (bps) 10.216 11.022 7.818
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
-------------------------

IC 分析
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
period_5 period_10 period_20
IC Mean 0.059 0.075 0.061
IC Std. 0.151 0.147 0.149
IR 0.389 0.513 0.409
t-stat(IC) 5.889 7.764 6.184
p-value(IC) 0.000 0.000 0.000
IC Skew -0.209 -0.145 0.500
IC Kurtosis -0.312 0.159 0.157
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
-------------------------

换手率分析
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
period_10 period_20 period_5
Quantile 1 Mean Turnover 0.565 0.769 0.399
Quantile 2 Mean Turnover 0.728 0.797 0.630
Quantile 3 Mean Turnover 0.739 0.775 0.663
Quantile 4 Mean Turnover 0.723 0.798 0.626
Quantile 5 Mean Turnover 0.590 0.795 0.421
.dataframe tbody tr th:only-of-type { vertical-align: middle; } .dataframe tbody tr th { vertical-align: top; } .dataframe thead th { text-align: right; }
period_5 period_10 period_20
Mean Factor Rank Autocorrelation 0.651 0.378 -0.038
<Figure size 432x288 with 0 Axes>
<Figure size 432x288 with 0 Axes>
-------------------------

<Figure size 432x288 with 0 Axes>

因子效果检查综述¶

IC分析显示,改良后的因子IC值与原因子相近,但标准差有所降低,即信息系数的稳定性得到提升。IR最低值为0.389,表现较稳健。

分组收益显示,在三种持有周期下,收益的组间单调性表现优秀,相比原来的因子有明显提升。

做多最大分位做空最小分位的多空组合显示收益较稳健,持有10天的多空组合年化收益接近15%,回测周期中上半年内的因子效率有待提升。

全部回复

0/140

量化课程

    移动端课程