import jqdata as jq
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
a=get_mtss('002038.XSHE', '2018-01-01', '2018-07-20')
b=get_price('002038.XSHE', '2018-01-01', '2018-07-20',fields='close')
print(a)
print(b)
date sec_code fin_value fin_buy_value fin_refund_value \ 0 2018-01-02 002038.XSHE 1559566392 30328094 49738674 1 2018-01-03 002038.XSHE 1559620601 31038894 30984685 2 2018-01-04 002038.XSHE 1585682984 75697116 49634733 3 2018-01-05 002038.XSHE 1578678663 38560939 45565260 4 2018-01-08 002038.XSHE 1592058672 47760445 34380436 5 2018-01-09 002038.XSHE 1601788086 97766494 88037080 6 2018-01-10 002038.XSHE 1589709383 40082697 52161400 7 2018-01-11 002038.XSHE 1583798462 49965199 55876120 8 2018-01-12 002038.XSHE 1566256850 38479590 56021202 9 2018-01-15 002038.XSHE 1556586822 49567895 59237923 10 2018-01-16 002038.XSHE 1546763663 24329493 34152652 11 2018-01-17 002038.XSHE 1528637974 29670602 47796291 12 2018-01-18 002038.XSHE 1527269852 17995137 19363259 13 2018-01-19 002038.XSHE 1525596418 28211725 29885159 14 2018-01-22 002038.XSHE 1527480191 30301773 28418000 15 2018-01-23 002038.XSHE 1523805999 22458398 26132590 16 2018-01-24 002038.XSHE 1543038942 70029417 50796474 17 2018-01-25 002038.XSHE 1544001411 39168696 38206227 18 2018-01-26 002038.XSHE 1530819646 67917098 81098863 19 2018-01-29 002038.XSHE 1521313142 39531731 49038235 20 2018-01-30 002038.XSHE 1523177214 24225125 22361053 21 2018-01-31 002038.XSHE 1554239809 61737543 30674948 22 2018-02-01 002038.XSHE 1556167612 41029888 39102085 23 2018-02-02 002038.XSHE 1542354869 27388484 41201227 24 2018-02-05 002038.XSHE 1538888067 36957677 40424479 25 2018-02-06 002038.XSHE 1522051855 54331798 71168010 26 2018-02-07 002038.XSHE 1505524226 26519539 43047168 27 2018-02-08 002038.XSHE 1503469615 26079872 28134483 28 2018-02-09 002038.XSHE 1502155249 26907937 28222303 29 2018-02-12 002038.XSHE 1495091087 21872521 28936683 .. ... ... ... ... ... 103 2018-06-07 002038.XSHE 1959118043 78331052 59479515 104 2018-06-08 002038.XSHE 1933181121 49491640 75428562 105 2018-06-11 002038.XSHE 1789909108 68247188 211519201 106 2018-06-12 002038.XSHE 1795195018 112791892 107505982 107 2018-06-13 002038.XSHE 1779591983 67246868 82849903 108 2018-06-14 002038.XSHE 1787752654 112632633 104471962 109 2018-06-15 002038.XSHE 1796606761 100476095 91621988 110 2018-06-19 002038.XSHE 1813128510 188831237 172309488 111 2018-06-20 002038.XSHE 1779546420 113531294 147113384 112 2018-06-21 002038.XSHE 1750789845 273199349 301955924 113 2018-06-22 002038.XSHE 1807228675 217587293 161148463 114 2018-06-25 002038.XSHE 1842782436 149608132 114054371 115 2018-06-26 002038.XSHE 1819965324 55153138 77970250 116 2018-06-27 002038.XSHE 1823433227 99475360 96007457 117 2018-06-28 002038.XSHE 1807676837 43973715 59730105 118 2018-06-29 002038.XSHE 1792770306 75944962 90851493 119 2018-07-02 002038.XSHE 1816469856 109364510 85664960 120 2018-07-03 002038.XSHE 1822914432 100982945 94538369 121 2018-07-04 002038.XSHE 1829623546 49268582 42559468 122 2018-07-05 002038.XSHE 1822052743 57252031 64822834 123 2018-07-06 002038.XSHE 1824018730 59371951 57405964 124 2018-07-09 002038.XSHE 1790620668 48294942 81693004 125 2018-07-10 002038.XSHE 1786260094 50179673 54540247 126 2018-07-11 002038.XSHE 1782788439 48383839 51855494 127 2018-07-12 002038.XSHE 1683531236 71932205 171189408 128 2018-07-13 002038.XSHE 1652043245 93921863 125409854 129 2018-07-16 002038.XSHE 1653772534 55282543 53553254 130 2018-07-17 002038.XSHE 1694272734 81465054 40964854 131 2018-07-18 002038.XSHE 1694497464 48220407 47995677 132 2018-07-19 002038.XSHE 1733864102 125636687 86270049 sec_value sec_sell_value sec_refund_value fin_sec_value 0 20500 12000 16100 1560206197 1 20200 3900 4200 1560257911 2 24600 8300 3900 1586468954 3 23600 4000 5000 1579421591 4 5800 2900 20700 1592239168 5 41400 39000 3400 1603115370 6 4200 1800 39000 1589842901 7 6100 2500 600 1583995126 8 3000 0 3100 1566355220 9 4100 1200 100 1556718022 10 12300 9400 1200 1547162306 11 13700 1400 0 1529075689 12 13700 0 0 1527705786 13 13000 1200 1900 1526003968 14 2400 0 10600 1527557351 15 2400 0 0 1523883279 16 2900 600 100 1543135077 17 3700 1400 600 1544123326 18 8300 6000 1400 1531097530 19 5000 2700 6000 1521477842 20 6000 2000 1000 1523376534 21 5000 1000 2000 1554400209 22 13900 8900 0 1556607547 23 6700 0 7200 1542563105 24 15300 11000 2400 1539347832 25 4100 0 11200 1522163580 26 4600 3200 2700 1505651002 27 4300 0 300 1503588897 28 5800 2700 1200 1502311849 29 4800 1200 2200 1495225295 .. ... ... ... ... 103 53560 3000 11400 1961616617 104 54560 11300 10300 1935694700 105 56560 14400 12400 1792469014 106 61960 15600 10200 1798118910 107 61960 12400 12400 1782477460 108 57888 12800 16872 1790372086 109 54407 13619 17100 1799098602 110 48507 17900 23800 1815250691 111 48907 16700 16300 1781756038 112 38107 10400 21200 1752339276 113 54607 31500 15000 1809328314 114 46807 12700 20500 1844495572 115 47007 18900 18700 1821730437 116 44107 24800 27700 1825021520 117 51607 21900 14400 1809540366 118 40379 11272 22500 1794304304 119 47079 16400 9700 1818221666 120 31679 21100 36500 1824073567 121 38679 21500 14500 1831024886 122 54179 30700 15200 1823960927 123 34579 16600 36200 1825258733 124 44879 23800 13500 1792283884 125 37705 16026 23200 1787654048 126 52505 34600 19800 1784686495 127 61105 49400 40800 1685842838 128 108305 55300 8100 1656214071 129 73105 18100 53300 1656595118 130 89805 35400 18700 1697678140 131 92505 32900 30200 1697943275 132 79205 23700 37000 1736650534 [133 rows x 9 columns] close 2018-01-02 30.87 2018-01-03 31.20 2018-01-04 31.60 2018-01-05 31.13 2018-01-08 30.78 2018-01-09 31.71 2018-01-10 31.44 2018-01-11 31.89 2018-01-12 32.43 2018-01-15 31.65 2018-01-16 32.05 2018-01-17 31.60 2018-01-18 31.47 2018-01-19 31.00 2018-01-22 31.80 2018-01-23 31.85 2018-01-24 32.78 2018-01-25 32.59 2018-01-26 33.11 2018-01-29 32.58 2018-01-30 32.85 2018-01-31 31.73 2018-02-01 31.30 2018-02-02 30.74 2018-02-05 29.72 2018-02-06 26.95 2018-02-07 27.26 2018-02-08 27.43 2018-02-09 26.70 2018-02-12 27.65 ... ... 2018-06-08 46.07 2018-06-11 45.26 2018-06-12 47.19 2018-06-13 46.57 2018-06-14 45.25 2018-06-15 45.80 2018-06-19 43.75 2018-06-20 45.18 2018-06-21 40.66 2018-06-22 38.45 2018-06-25 36.60 2018-06-26 37.55 2018-06-27 36.01 2018-06-28 36.11 2018-06-29 37.99 2018-07-02 37.21 2018-07-03 36.59 2018-07-04 36.23 2018-07-05 35.22 2018-07-06 35.86 2018-07-09 37.06 2018-07-10 36.97 2018-07-11 36.15 2018-07-12 37.83 2018-07-13 38.51 2018-07-16 38.61 2018-07-17 37.92 2018-07-18 37.25 2018-07-19 35.18 2018-07-20 35.98 [134 rows x 1 columns]
plt.figure(figsize=[18,5])
a['sec_value'].plot(label='sec_value')
a['sec_sell_value'].plot(label='sec_sell_value')
b.plot()
plt.legend(loc='best')
<matplotlib.legend.Legend at 0x7f25628cab00>
df = get_price(get_industry_stocks('A01'), fields=('close',))['close']
print(df)
plt.figure(figsize=[18,5])
df['000998.XSHE'].plot()
pd.rolling_mean(df['000998.XSHE'],20).plot(label='20 day moving average')
pd.rolling_mean(df['000998.XSHE'],5).plot(label='5 day moving average')
plt.legend(loc='best')
000998.XSHE 002041.XSHE 002772.XSHE 300087.XSHE 300189.XSHE \ 2015-01-05 19.34 12.71 NaN 3.96 2.71 2015-01-06 19.73 12.92 NaN 4.08 2.78 2015-01-07 19.57 12.85 NaN 4.04 2.76 2015-01-08 20.11 13.03 NaN 4.13 2.77 2015-01-09 19.75 12.87 NaN 4.02 2.72 2015-01-12 19.22 12.98 NaN 3.91 2.66 2015-01-13 19.59 13.15 NaN 4.04 2.73 2015-01-14 19.21 12.96 NaN 3.98 2.68 2015-01-15 19.37 13.04 NaN 4.05 2.70 2015-01-16 19.77 13.26 NaN 4.17 2.76 2015-01-19 19.21 13.31 NaN 4.12 2.66 2015-01-20 19.61 13.55 NaN 4.26 2.73 2015-01-21 20.03 13.79 NaN 4.38 2.80 2015-01-22 20.62 13.92 NaN 4.41 2.88 2015-01-23 20.21 13.66 NaN 4.33 2.83 2015-01-26 20.31 13.76 NaN 4.35 2.86 2015-01-27 20.76 13.94 NaN 4.61 2.91 2015-01-28 20.30 13.68 NaN 4.79 2.88 2015-01-29 20.20 13.39 NaN 4.71 2.88 2015-01-30 20.96 13.66 NaN 4.77 2.95 2015-02-02 20.53 13.32 NaN 4.74 2.88 2015-02-03 20.15 13.11 NaN 4.82 2.86 2015-02-04 19.70 13.11 NaN 4.76 2.85 2015-02-05 19.54 12.88 NaN 4.62 2.85 2015-02-06 18.73 12.57 NaN 4.45 2.79 2015-02-09 18.42 12.76 NaN 4.48 2.79 2015-02-10 18.71 12.81 NaN 4.46 2.84 2015-02-11 18.61 12.93 NaN 4.58 2.85 2015-02-12 18.89 12.77 NaN 4.72 2.87 2015-02-13 19.10 12.90 NaN 4.77 2.90 ... ... ... ... ... ... 2015-11-20 21.47 17.72 22.76 8.83 11.35 2015-11-23 21.12 17.24 21.52 9.16 11.35 2015-11-24 21.23 17.56 22.62 9.11 11.35 2015-11-25 21.37 17.80 22.76 9.15 11.35 2015-11-26 20.80 17.26 23.94 9.26 11.35 2015-11-27 19.22 15.84 21.73 8.51 11.35 2015-11-30 19.04 15.76 23.47 8.34 11.35 2015-12-01 19.26 16.02 23.22 8.71 11.35 2015-12-02 19.43 16.18 22.14 8.65 11.35 2015-12-03 19.61 16.28 23.41 8.73 11.35 2015-12-04 20.05 16.62 24.51 8.80 10.22 2015-12-07 19.70 16.46 23.97 8.73 9.20 2015-12-08 19.10 15.86 24.63 8.58 9.28 2015-12-09 18.70 15.65 23.14 8.23 8.36 2015-12-10 18.83 15.75 22.66 8.09 8.50 2015-12-11 18.62 15.84 22.40 7.87 8.02 2015-12-14 19.02 16.04 22.98 8.10 8.06 2015-12-15 19.04 16.08 22.64 8.15 8.14 2015-12-16 18.99 16.01 23.58 8.73 8.43 2015-12-17 19.92 16.43 24.68 8.96 8.47 2015-12-18 20.84 16.72 23.97 8.80 8.19 2015-12-21 21.62 17.04 24.44 8.84 8.21 2015-12-22 23.78 18.30 25.54 9.26 8.24 2015-12-23 23.55 17.47 25.47 8.93 8.03 2015-12-24 24.45 17.82 25.99 8.91 7.94 2015-12-25 24.39 17.60 24.92 9.03 7.95 2015-12-28 23.42 16.79 23.48 8.79 7.88 2015-12-29 23.63 16.89 23.80 8.80 7.78 2015-12-30 23.17 16.88 23.73 8.93 7.75 2015-12-31 23.23 16.68 22.91 8.74 7.41 300511.XSHE 600108.XSHG 600313.XSHG 600354.XSHG 600359.XSHG \ 2015-01-05 NaN 9.51 4.50 8.81 10.92 2015-01-06 NaN 9.75 4.62 8.75 11.08 2015-01-07 NaN 9.98 4.70 8.85 11.07 2015-01-08 NaN 9.77 4.74 8.89 11.12 2015-01-09 NaN 9.41 4.59 8.60 10.80 2015-01-12 NaN 9.45 4.58 8.47 10.73 2015-01-13 NaN 9.50 4.69 8.78 10.90 2015-01-14 NaN 9.45 4.62 8.64 10.88 2015-01-15 NaN 9.56 4.66 8.65 11.11 2015-01-16 NaN 10.00 4.80 8.80 11.25 2015-01-19 NaN 9.66 4.72 8.42 10.79 2015-01-20 NaN 10.02 4.95 8.59 11.10 2015-01-21 NaN 10.23 5.24 8.84 11.29 2015-01-22 NaN 10.41 5.44 9.18 11.58 2015-01-23 NaN 10.09 5.39 8.98 11.36 2015-01-26 NaN 10.13 5.49 9.08 11.49 2015-01-27 NaN 10.44 5.89 9.37 11.73 2015-01-28 NaN 10.17 5.66 9.24 11.54 2015-01-29 NaN 10.06 5.67 9.36 11.24 2015-01-30 NaN 10.25 5.73 9.40 11.34 2015-02-02 NaN 9.64 5.32 8.93 11.31 2015-02-03 NaN 9.44 5.37 8.74 11.13 2015-02-04 NaN 9.22 5.17 8.60 10.87 2015-02-05 NaN 8.96 5.11 8.44 10.70 2015-02-06 NaN 8.57 4.92 8.14 10.35 2015-02-09 NaN 8.63 5.28 8.18 10.33 2015-02-10 NaN 8.69 5.43 8.25 10.27 2015-02-11 NaN 8.80 5.74 8.28 10.61 2015-02-12 NaN 8.75 5.70 8.20 10.57 2015-02-13 NaN 8.88 5.66 8.34 10.71 ... ... ... ... ... ... 2015-11-20 NaN 7.72 5.78 8.95 13.02 2015-11-23 NaN 7.72 5.79 8.94 12.60 2015-11-24 NaN 7.77 5.87 9.20 12.46 2015-11-25 NaN 7.82 6.16 9.71 12.78 2015-11-26 NaN 7.85 5.94 9.44 12.70 2015-11-27 NaN 7.15 5.60 8.83 13.05 2015-11-30 NaN 7.07 5.62 9.34 14.05 2015-12-01 NaN 7.41 6.14 9.49 13.60 2015-12-02 NaN 7.45 6.07 9.51 13.07 2015-12-03 NaN 7.48 6.28 9.67 13.40 2015-12-04 NaN 7.77 6.60 10.08 13.83 2015-12-07 NaN 7.83 6.59 10.16 13.60 2015-12-08 NaN 7.44 6.14 9.81 13.40 2015-12-09 NaN 7.29 6.00 9.59 13.07 2015-12-10 NaN 7.26 6.02 10.23 12.94 2015-12-11 NaN 7.20 6.01 9.83 12.27 2015-12-14 NaN 7.35 6.11 9.88 12.56 2015-12-15 NaN 7.37 6.14 9.88 12.43 2015-12-16 NaN 7.31 6.09 9.88 12.75 2015-12-17 NaN 7.48 6.31 9.88 13.09 2015-12-18 NaN 7.57 6.39 9.88 12.91 2015-12-21 NaN 7.70 6.38 9.88 13.18 2015-12-22 NaN 7.80 6.53 9.88 13.66 2015-12-23 NaN 7.58 6.23 9.88 13.02 2015-12-24 NaN 7.87 6.28 9.88 13.05 2015-12-25 NaN 7.80 6.20 9.88 12.80 2015-12-28 NaN 7.45 5.88 9.88 12.44 2015-12-29 NaN 7.50 6.06 9.88 12.49 2015-12-30 NaN 7.46 6.06 9.88 12.51 2015-12-31 NaN 7.32 6.00 9.88 11.96 600371.XSHG 600506.XSHG 600540.XSHG 600598.XSHG 601118.XSHG 2015-01-05 10.55 11.33 6.28 9.34 8.88 2015-01-06 10.72 11.62 6.39 9.65 9.15 2015-01-07 10.70 11.54 6.37 9.68 9.03 2015-01-08 10.76 11.81 6.39 9.70 8.85 2015-01-09 10.47 11.73 6.30 9.58 8.61 2015-01-12 10.27 11.34 6.22 9.57 8.89 2015-01-13 10.40 11.54 6.25 9.59 8.94 2015-01-14 10.35 11.84 6.29 9.34 8.75 2015-01-15 10.45 11.86 6.37 9.51 8.90 2015-01-16 10.63 11.98 6.42 9.65 9.09 2015-01-19 10.35 11.96 6.26 9.27 8.60 2015-01-20 10.65 12.33 6.39 9.62 8.80 2015-01-21 10.85 12.65 6.53 9.94 8.94 2015-01-22 11.07 12.76 6.65 10.19 9.25 2015-01-23 10.84 12.62 6.59 10.04 9.06 2015-01-26 11.02 12.74 6.79 10.49 9.20 2015-01-27 11.11 12.79 6.94 10.65 9.34 2015-01-28 10.89 12.61 6.92 10.57 9.15 2015-01-29 10.78 12.32 6.89 10.50 9.04 2015-01-30 11.11 12.26 6.84 10.56 9.14 2015-02-02 11.15 12.22 6.87 10.03 8.81 2015-02-03 10.93 12.37 7.10 9.93 8.73 2015-02-04 11.12 12.45 6.83 9.85 8.64 2015-02-05 11.02 12.18 6.69 9.72 8.37 2015-02-06 10.69 11.88 6.54 9.52 7.93 2015-02-09 10.50 11.85 6.46 9.59 8.01 2015-02-10 10.55 11.85 6.49 9.56 8.04 2015-02-11 10.56 11.98 6.66 9.87 8.18 2015-02-12 10.87 12.08 6.70 10.13 8.14 2015-02-13 10.95 12.29 6.85 10.14 8.23 ... ... ... ... ... ... 2015-11-20 17.25 21.69 8.39 14.07 7.75 2015-11-23 17.61 21.15 8.16 14.08 7.86 2015-11-24 17.90 21.18 8.36 14.19 7.98 2015-11-25 18.93 21.28 8.67 14.48 7.98 2015-11-26 18.96 21.55 8.84 14.31 8.15 2015-11-27 19.33 19.49 8.64 13.19 7.43 2015-11-30 21.26 19.05 8.35 12.77 7.29 2015-12-01 20.77 19.81 8.69 13.35 7.68 2015-12-02 20.04 19.26 8.39 13.39 7.74 2015-12-03 20.63 20.69 8.51 13.45 7.82 2015-12-04 21.81 20.70 8.77 14.35 8.15 2015-12-07 21.74 20.94 8.82 14.73 8.15 2015-12-08 20.32 20.95 8.45 13.87 7.70 2015-12-09 20.32 20.53 8.23 13.36 7.68 2015-12-10 19.58 21.12 8.12 13.61 7.58 2015-12-11 20.09 21.12 8.18 13.25 7.46 2015-12-14 20.68 21.29 8.23 13.43 7.63 2015-12-15 20.69 21.76 8.31 13.55 7.67 2015-12-16 21.94 22.07 8.32 13.45 7.54 2015-12-17 22.14 22.82 8.68 14.11 7.70 2015-12-18 21.59 23.35 9.03 14.21 7.80 2015-12-21 21.35 22.92 8.92 14.36 7.97 2015-12-22 23.49 23.10 8.89 14.79 8.14 2015-12-23 22.48 22.87 8.71 14.17 7.90 2015-12-24 22.97 23.60 8.75 14.53 8.11 2015-12-25 23.06 24.05 9.13 14.46 8.03 2015-12-28 22.28 22.30 9.04 13.71 7.68 2015-12-29 22.31 22.71 9.05 13.80 7.74 2015-12-30 22.42 22.62 8.79 13.70 7.70 2015-12-31 22.27 23.43 8.46 13.53 7.56 [244 rows x 15 columns]
<matplotlib.legend.Legend at 0x7f2560de19e8>
本社区仅针对特定人员开放
查看需注册登录并通过风险意识测评
5秒后跳转登录页面...
移动端课程