# 导入函数库
import jqdata
# 第三方函数库
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.finance as mpf
import matplotlib.patches as patches
import talib
def get_k_series(security, start_date, end_date, n=30):
#
# 获取k线序列,默认为30分钟级别
# 输入:n是级别,单位是分钟
# 输出:pandas, k线序列
one_min_data = get_price(
security,
start_date=start_date,
end_date=end_date,
frequency='1m',
fields=['open','close','high', 'low']
)
n_min_data = pd.DataFrame()
for i in range(n, len(one_min_data)+1, n):
interval = one_min_data[i-n:i]
interval_open = interval.open[0]
interval_high = max(interval.high)
interval_low = min(interval.low)
interval_k = pd.DataFrame(interval[-1:]) # 新建DataFrame,否则会报SettingWithCopyWarning
interval_k.open = interval_open
interval_k.high = interval_high
interval_k.low = interval_low
n_min_data = pd.concat([n_min_data, interval_k],axis=0)
return n_min_data
def get_binary_positions(k_data):
#
# 计算k线序列的二分位值
# 输入:k线序列
# 输出:list, k线序列对应的二分位值
binary_positions=[]
for i in xrange(len(k_data)):
temp_y = (k_data.high[i]+k_data.low[i])/2.0
binary_positions.append(temp_y)
return binary_positions
def adjust_by_cintainment(k_data):
#
# 判断k线的包含关系,便于寻找顶分型和底分型
# 输入:k线序列
# 输出:adjusted_k_data, 处理后的k线序列
trend = [0]
adjusted_k_data = pd.DataFrame()
temp_data = k_data[:1]
for i in xrange(len(k_data)):
is_equal = temp_data.high[-1] == k_data.high[i] and temp_data.low[-1] == k_data.low[i] # 第1根等于第2根
# 向右包含
if temp_data.high[-1] >= k_data.high[i] and temp_data.low[-1] <= k_data.low[i] and not is_equal:
if trend[-1] == -1:
temp_data.high[-1] = k_data.high[i]
else:
temp_data.low[-1] = k_data.low[i]
# 向左包含
elif temp_data.high[-1] <= k_data.high[i] and temp_data.low[-1] >= k_data.low[i] and not is_equal:
if trend[-1] == -1:
temp_data.low[-1] = k_data.low[i]
else:
temp_data.high[-1] = k_data.high[i]
elif is_equal:
trend.append(0)
elif temp_data.high[-1] > k_data.high[i] and temp_data.low[-1] > k_data.low[i]:
trend.append(-1)
temp_data = k_data[i:i+1]
elif temp_data.high[-1] < k_data.high[i] and temp_data.low[-1] < k_data.low[i]:
trend.append(1)
temp_data = k_data[i:i+1]
# 调整收盘价和开盘价
if temp_data.open[-1] > temp_data.close[-1]:
if temp_data.open[-1] > temp_data.high[-1]:
temp_data.open[-1] = temp_data.high[-1]
if temp_data.close[-1] < temp_data.low[-1]:
temp_data.close[-1] = temp_data.low[-1]
else:
if temp_data.open[-1] < temp_data.low[-1]:
temp_data.open[-1] = temp_data.low[-1]
if temp_data.close[-1] > temp_data.high[-1]:
temp_data.close[-1] = temp_data.high[-1]
adjusted_data = k_data[i:i+1]
adjusted_data.open[-1] = temp_data.open[-1]
adjusted_data.close[-1] = temp_data.close[-1]
adjusted_data.high[-1] = temp_data.high[-1]
adjusted_data.low[-1] = temp_data.low[-1]
adjusted_k_data = pd.concat([adjusted_k_data,adjusted_data],axis = 0)
return adjusted_k_data
def get_fx(adjusted_k_data):
#
# 寻找顶分型和底分型
# 1)连续分型选择最极端值
# 2)分型之间保证3根k线
# 输入:调整后的k线序列
# 输出:顶分型和底分型的位置
temp_num = 0 #上一个顶或底的位置
temp_high = 0 #上一个顶的high值
temp_low = 0 #上一个底的low值
temp_type = 0 # 上一个记录位置的类型
fx_type = [] # 记录分型点的类型,1为顶分型,-1为底分型
fx_time = [] # 记录分型点的时间
fx_plot = [] # 记录点的数值,为顶分型取high值,为底分型取low值
fx_data = pd.DataFrame() # 记录分型
fx_offset = []
# 加上线段起点
fx_type.append(0)
fx_offset.append(0)
fx_time.append(adjusted_k_data.index[0].strftime("%Y-%m-%d %H:%M:%S"))
fx_data = pd.concat([fx_data,adjusted_k_data[:1]],axis = 0)
fx_plot.append((adjusted_k_data.low[0]+adjusted_k_data.high[0])/2)
i = 1
while (i < len(adjusted_k_data)-1):
top = adjusted_k_data.high[i-1] <= adjusted_k_data.high[i] \
and adjusted_k_data.high[i] > adjusted_k_data.high[i+1] #顶分型
bottom = adjusted_k_data.low[i-1] >= adjusted_k_data.low[i] \
and adjusted_k_data.low[i] < adjusted_k_data.low[i+1] #底分型
if top:
if temp_type == 1:
# 如果上一个分型为顶分型,则进行比较,选取高点更高的分型
if adjusted_k_data.high[i] <= temp_high:
i += 1
else:
temp_high = adjusted_k_data.high[i]
temp_low = adjusted_k_data.low[i]
temp_num = i
temp_type = 1
i += 2 # 两个分型之间至少有3根k线
elif temp_type == -1:
# 如果上一个分型为底分型,则记录上一个分型,用当前分型与后面的分型比较,选取同向更极端的分型
if temp_low >= adjusted_k_data.high[i]:
# 如果上一个底分型的底比当前顶分型的顶高,则跳过当前顶分型。
i += 1
else:
fx_type.append(-1)
fx_time.append(adjusted_k_data.index[temp_num].strftime("%Y-%m-%d %H:%M:%S"))
fx_data = pd.concat([fx_data,adjusted_k_data[temp_num:temp_num+1]],axis = 0)
fx_plot.append(temp_low)
fx_offset.append(temp_num)
temp_high = adjusted_k_data.high[i]
temp_low = adjusted_k_data.low[i]
temp_num = i
temp_type = 1
i += 2 # 两个分型之间至少有3根k线
else:
temp_high = adjusted_k_data.high[i]
temp_low = adjusted_k_data.low[i]
temp_num = i
temp_type = 1
i += 2
elif bottom:
if temp_type == -1:
# 如果上一个分型为底分型,则进行比较,选取低点更低的分型
if adjusted_k_data.low[i] >= temp_low:
i += 1
else:
temp_low = adjusted_k_data.low[i]
temp_high = adjusted_k_data.high[i]
temp_num = i
temp_type = -1
i += 3
elif temp_type == 1:
# 如果上一个分型为顶分型,则记录上一个分型,用当前分型与后面的分型比较,选取同向更极端的分型
if temp_high <= adjusted_k_data.low[i]:
# 如果上一个顶分型的底比当前底分型的底低,则跳过当前底分型。
i += 1
else:
fx_type.append(1)
fx_time.append(adjusted_k_data.index[temp_num].strftime("%Y-%m-%d %H:%M:%S"))
fx_data = pd.concat([fx_data,adjusted_k_data[temp_num:temp_num+1]],axis = 0)
fx_plot.append(temp_high)
fx_offset.append(temp_num)
temp_low = adjusted_k_data.low[i]
temp_high = adjusted_k_data.high[i]
temp_num = i
temp_type = -1
i += 2
else:
temp_low = adjusted_k_data.low[i]
temp_high = adjusted_k_data.high[i]
temp_num = i
temp_type = -1
i += 2
else:
i += 1
# 加上最后一个分型(上面的循环中最后的一个分型并未处理)
if temp_type == -1:
fx_type.append(-1)
fx_time.append(adjusted_k_data.index[temp_num].strftime("%Y-%m-%d %H:%M:%S"))
fx_data = pd.concat([fx_data,adjusted_k_data[temp_num:temp_num+1]],axis = 0)
fx_plot.append(temp_low)
fx_offset.append(temp_num)
elif temp_type == 1:
fx_type.append(1)
fx_time.append(adjusted_k_data.index[temp_num].strftime("%Y-%m-%d %H:%M:%S"))
fx_data = pd.concat([fx_data,adjusted_k_data[temp_num:temp_num+1]],axis = 0)
fx_plot.append(temp_high)
fx_offset.append(temp_num)
# 加上线段终点
fx_type.append(0)
fx_offset.append(len(adjusted_k_data)-1)
fx_time.append(adjusted_k_data.index[-1].strftime("%Y-%m-%d %H:%M:%S"))
fx_data = pd.concat([fx_data,adjusted_k_data[-1:]],axis = 0)
fx_plot.append((adjusted_k_data.low[-1]+adjusted_k_data.high[-1])/2)
return fx_type, fx_time, fx_data, fx_plot, fx_offset
def get_pivot(fx_plot, fx_offset, fx_observe):
#
# 计算最近的中枢
# 注意:一个中枢至少有三笔
# fx_plot 笔的节点股价
# fx_offset 笔的节点时间点(偏移)
# fx_observe 所观测的分型点
if fx_observe < 1:
# 处理边界
right_bound = 0
left_bount = 0
min_high = 0
max_low = 0
pivot_x_interval = [left_bount,right_bound]
pivot_price_interval = [max_low, min_high]
return pivot_x_interval, pivot_price_interval
right_bound = (fx_offset[fx_observe]+fx_offset[fx_observe-1])/2
# 右边界是所观察分型的上一笔中位
left_bount = 0
min_high = 0
max_low = 0
if fx_plot[fx_observe] >= fx_plot[fx_observe-1]:
# 所观察分型的上一笔是往上的一笔
min_high = fx_plot[fx_observe]
max_low = fx_plot[fx_observe-1]
else: # 所观察分型的上一笔是往下的一笔
max_low = fx_plot[fx_observe]
min_high = fx_plot[fx_observe-1]
i = fx_observe - 1
cover = 0 # 记录走势的重叠区,至少为3才能画中枢
while (i >= 1):
if fx_plot[i] >= fx_plot[i-1]:
# 往上的一笔
if fx_plot[i] < max_low or fx_plot[i-1] > min_high:
# 已经没有重叠区域了
left_bount = (fx_offset[i] + fx_offset[i+1])/2
break
else:
# 有重叠区域
# 计算更窄的中枢价格区间
cover += 1
min_high = min(fx_plot[i], min_high)
max_low = max(fx_plot[i-1], max_low)
elif fx_plot[i] < fx_plot[i-1]:
# 往下的一笔
if fx_plot[i] > min_high or fx_plot[i-1] < max_low:
# 已经没有重叠区域了
left_bount = (fx_offset[i] + fx_offset[i+1])/2
break
else:
# 有重叠区域
# 计算更窄的中枢价格区间
cover += 3
min_high = min(fx_plot[i-1], min_high)
max_low = max(fx_plot[i], max_low)
i -= 1
if cover < 3:
# 不满足中枢定义
right_bound = 0
left_bount = 0
min_high = 0
max_low = 0
pivot_x_interval = [left_bount,right_bound]
pivot_price_interval = [max_low, min_high]
return pivot_x_interval, pivot_price_interval
def plot_k_series(k_data):
# 画k线
num_of_ticks = len(k_data)
fig, ax = plt.subplots(figsize = (num_of_ticks,20))
fig.subplots_adjust(bottom=0.2)
dates = k_data.index
# print dates
ax.set_xticks(np.linspace(1,num_of_ticks,num_of_ticks))
ax.set_xticklabels(list(dates))
mpf.candlestick2(
ax,
list(k_data.open),list(k_data.close),list(k_data.high),list(k_data.low),
width=0.6, colorup='r', colordown='b',alpha=0.75
)
plt.grid(True)
plt.setp(plt.gca().get_xticklabels(), rotation=30)
return ax
def plot_lines(ax, fx_plot, fx_offset):
# 绘制笔和线段
# ax 绘图区域
# fx_plot
plt.plot(fx_offset, fx_plot, 'k', lw=1)
plt.plot(fx_offset, fx_plot, 'o')
def plot_pivot(ax, pivot_date_interval, pivot_price_interval):
#
# 绘制中枢
start_point = (pivot_date_interval[0], pivot_price_interval[0])
width = pivot_date_interval[1] - pivot_date_interval[0]
height = pivot_price_interval[1] - pivot_price_interval[0]
ax.add_patch(
patches.Rectangle(
start_point, # (x,y)
width, # width
height, # height
linewidth=8,
edgecolor='g',
facecolor='none'
)
)
return
def check_deviating(scode, fastperiod=11, slowperiod=26, signalperiod=9):
#
# 日线级别,计算昨天收盘是否发生顶或底背离,利用快慢线金、死叉判断
# scode,证券代码
# fastperiod,fastperiod,signalperiod:MACD参数,默认为11,26,9
# 返回 dev_type, 0:没有背离,1:发生顶背离,-1:发生底背离
rows = (fastperiod + slowperiod + signalperiod) * 5
close = attribute_history(security=scode, count=rows, unit='1d', fields=['close']).dropna()
dif, dea, macd = talib.MACD(close.values, fastperiod, slowperiod, signalperiod)
if macd[-1] > 0 > macd[-2]:
# 底背离
# 昨天金叉
# idx_gold: 各次金叉出现的位置
idx_gold = np.where((macd[:-1] < 0) & (macd[1:] > 0))[0] + 1 # type: np.ndarray
if len(idx_gold) > 1:
if close[idx_gold[-1]] < close[idx_gold[-2]] and dif[idx_gold[-1]] > dif[idx_gold[-2]]:
dev_type = -1
elif macd[-1] < 0 < macd[-2]:
# 顶背离
# 昨天死叉
# idx_dead: 各次死叉出现的位置
idx_dead = np.where((macd[:-1] > 0) & (macd[1:] < 0))[0] + 1 # type: np.ndarray
if len(idx_dead) > 1:
if close[idx_dead[-1]] > close[idx_dead[-2]] and dif[idx_dead[-1]] < dif[idx_dead[-2]]:
dev_type = 1
else:
# 不发生背离
dev_type = 0
return dev_type
start_date = datetime.datetime(2017, 11, 6, 9, 0, 0)
end_date = datetime.datetime(2017, 11, 10, 15, 30, 0)
k_series = get_k_series('000100.XSHE', start_date, end_date, 30)
plot_k_series(k_series) # 原始k线图
adjusted_k_data = adjust_by_cintainment(k_series)
ax = plot_k_series(adjusted_k_data) # 调整后的k线图
fx_type, fx_time, fx_data, fx_plot, fx_offset = get_fx(adjusted_k_data)
print fx_type, fx_time
plot_lines(ax, fx_plot, fx_offset)
pivot_x_interval, pivot_price_interval = get_pivot(fx_plot, fx_offset, len(fx_offset)-2)
plot_pivot(ax, pivot_x_interval, pivot_price_interval)
[0, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0] ['2017-11-06 10:00:00', '2017-11-06 11:00:00', '2017-11-06 13:30:00', '2017-11-07 10:30:00', '2017-11-07 14:30:00', '2017-11-08 10:00:00', '2017-11-09 10:00:00', '2017-11-09 11:00:00', '2017-11-09 14:00:00', '2017-11-10 14:00:00', '2017-11-10 15:00:00']
/opt/conda/envs/python2/lib/python2.7/site-packages/ipykernel/__main__.py:357: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
本社区仅针对特定人员开放
查看需注册登录并通过风险意识测评
5秒后跳转登录页面...
移动端课程