貌似是在吴军的谷歌方法论中看到过类似的论述,国家的竞争最终是人的竞争,企业的竞争也是一样。一家企业的人均利润如果逐年呈现上升态势,说明企业正走在正确的发展道路上。 所以我使用聚款数据将我期待的数据进行了查找并呈现,选取的股票都是多数机构评级较高的股票。
import numpy as np import pandas as pd import matplotlib.pyplot as plt from jqdata import finance
def profit_per_employ(stock_code): d_employee = finance.run_query( query( finance.STK_EMPLOYEE_INFO ).filter( finance.STK_EMPLOYEE_INFO.code==stock_code ).order_by( finance.STK_EMPLOYEE_INFO.end_date.desc() ).limit(10) ) d_employee['profit'] = None d_employee['pro_rate'] = None p = np.zeros(len(d_employee)) for i in range(len(d_employee)): d_temp = get_fundamentals( query( income.net_profit ).filter( income.code == stock_code ),date = d_employee.end_date.iloc[i] ) if len(d_temp)>0: p[i] = d_temp.net_profit.iloc[0].copy() d_employee.profit = p d_employee = d_employee.drop( ['id','company_id','graduate_rate','middle_rate','college_rate','pub_date','retirement'] , axis = 1) d_employee.pro_rate = (d_employee.profit / d_employee.employee).values d_employee.index = d_employee.end_date #d_employee.pro_rate.plot() return d_employee.name.iloc[0],d_employee.code.iloc[0],d_employee.pro_rate
s = '000776.002007.002371.002594.002677.002707.002747.300012.300037.\ 300070.300073.300144.300251.300747.300750.600030.600036.600054.\ 600305.600315.600588.600660.600754.600837.601211.601633.601688.\ 601766.603027.603288.603799.603866.603877.603899.000002.000024.\ 000063.000333.000568.000661.000858.001979.002024.002475.002511.\ 002624.002916.300003.600031.600048.600104.600323.600426.600438.\ 600486.600519.600809.600872.600887.601012.601155.601233.601336.\ 601888.603517.603588' s = s.split('.') s = np.sort(s) lenth_s = len(s) fig,axes = plt.subplots(33,2,figsize=(20,120)) fig.subplots_adjust( hspace = 0.5) for i,ax in enumerate(axes.flat): n = normalize_code(s[i]) name,code,pro_rate = profit_per_employ(n) ax.plot(pro_rate,'-') title = code + '.' + name ax.set_title(title) plt.show()
本社区仅针对特定人员开放
查看需注册登录并通过风险意识测评
5秒后跳转登录页面...
移动端课程