静态效果图:
第一部分获取龙虎榜大券商的持仓数据,包括:
成交量,多仓,空仓;
第二部分plotly画图,取两个代表性的期货尚
中信和国泰君安(多空差较大)
plotly图像丰富,只能保存网页html格式或静态图片
#1获取数据
from jqdatasdk import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
import matplotlib.ticker as ticker
plt.style.use("ggplot")
import talib
#解决中文显示问题
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus'] = False
auth('','')
b1 = []
b2 = []
b3 = []
b4 = []
b5 = []
b11 = []
b12 = []
b13 = []
b14 = []
b15 = []
b21 = []
b22 = []
b23 = []
b24 = []
b25 = []
b31 = []
b32 = []
b33 = []
b34 = []
b35 = []
c1=[]
c2=[]
c3=[]
c4=[]
c5=[]
c11=[]
c12=[]
c13=[]
c14=[]
c15=[]
c21=[]
c22=[]
c23=[]
c24=[]
c25=[]
c31=[]
c32=[]
c33=[]
c34=[]
c35=[]
d1=[]
d2=[]
d3=[]
d4=[]
d5=[]
d21=[]
d22=[]
d23=[]
d24=[]
d25=[]
d31=[]
d32=[]
d33=[]
d34=[]
d35=[]
d11=[]
d12=[]
d13=[]
d14=[]
d15=[]
price=get_price('IF1906.CCFX',end_date='2019-05-17',count=22)
#501001-成交量排名, 501002-持买单量排名, 501003-持卖单量排名
date=['2019-04-15', '2019-04-16', '2019-04-17', '2019-04-18', '2019-04-19',
'2019-04-22', '2019-04-23', '2019-04-24', '2019-04-25', '2019-04-26', '2019-04-29', '2019-04-30',
'2019-05-06', '2019-05-07', '2019-05-08', '2019-05-09', '2019-05-10', '2019-05-13', '2019-05-14',
'2019-05-15', '2019-05-16','2019-05-17','2019-05-20']
# 501002-持买单量排名
for k in date:
q=query( finance.FUT_MEMBER_POSITION_RANK.day,
finance.FUT_MEMBER_POSITION_RANK.code,
finance.FUT_MEMBER_POSITION_RANK.rank_type_ID,
finance.FUT_MEMBER_POSITION_RANK.rank,
finance.FUT_MEMBER_POSITION_RANK.member_name,
finance.FUT_MEMBER_POSITION_RANK.indicator,
finance.FUT_MEMBER_POSITION_RANK.indicator_increase,).filter(
finance.FUT_MEMBER_POSITION_RANK.code=='IC1906.CCFX',
finance.FUT_MEMBER_POSITION_RANK.rank_type_ID=='501002',
finance.FUT_MEMBER_POSITION_RANK.day==k).order_by(
finance.FUT_MEMBER_POSITION_RANK.member_name.desc())
df=finance.run_query(q)
for i in range(len(df)):
a = "中信期货"
if a in df.loc[i, 'member_name']:
a1 = df.loc[i, 'member_name']
a2 = df.loc[i, 'indicator']
a3 = df.loc[i, 'indicator_increase']
a4 = df.loc[i, 'code']
a5 = df.loc[i,'day']
b1.append(a1)
b2.append(a2)
b3.append(a3)
b4.append(a4)
b5.append(a5)
print(b1)
for ii in range(len(df)):
a = "海通期货"
if a in df.loc[ii, 'member_name']:
a1 = df.loc[ii, 'member_name']
a2 = df.loc[ii, 'indicator']
a3 = df.loc[ii, 'indicator_increase']
a4 = df.loc[ii, 'code']
a5 = df.loc[ii,'day']
b11.append(a1)
b12.append(a2)
b13.append(a3)
b14.append(a4)
b15.append(a5)
for iii in range(len(df)):
a = "国泰君安"
if a in df.loc[iii, 'member_name']:
a1 = df.loc[iii, 'member_name']
a2 = df.loc[iii, 'indicator']
a3 = df.loc[iii, 'indicator_increase']
a4 = df.loc[iii, 'code']
a5 = df.loc[iii,'day']
b21.append(a1)
b22.append(a2)
b23.append(a3)
b24.append(a4)
b25.append(a5)
for iiii in range(len(df)):
a = "华泰期货"
if a in df.loc[iiii, 'member_name']:
a1 = df.loc[iiii, 'member_name']
a2 = df.loc[iiii, 'indicator']
a3 = df.loc[iiii, 'indicator_increase']
a4 = df.loc[iiii, 'code']
a5 = df.loc[iiii,'day']
b31.append(a1)
b32.append(a2)
b33.append(a3)
b34.append(a4)
b35.append(a5)
f1 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f1['day']=b5
f1[ 'member_name'] = b1
f1['indicator'] = b2
f1['indicator_increase']=b3
f1 = f1.set_index(['day'])
f11 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f11['day']=b15
f11[ 'member_name'] = b11
f11['indicator'] = b12
f11['indicator_increase']=b13
f11 = f11.set_index(['day'])
f21 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f21['day']=b25
f21[ 'member_name'] = b21
f21['indicator'] = b22
f21['indicator_increase']=b23
f21 = f21.set_index(['day'])
f31 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f31['day']=b35
f31[ 'member_name'] = b31
f31['indicator'] = b32
f31['indicator_increase']=b33
f31 = f31.set_index(['day'])
#501003-持卖单量排名
for i in date:
q=query(finance.FUT_MEMBER_POSITION_RANK.day,
finance.FUT_MEMBER_POSITION_RANK.code,
finance.FUT_MEMBER_POSITION_RANK.rank_type_ID,
finance.FUT_MEMBER_POSITION_RANK.rank,
finance.FUT_MEMBER_POSITION_RANK.member_name,
finance.FUT_MEMBER_POSITION_RANK.indicator,
finance.FUT_MEMBER_POSITION_RANK.indicator_increase,).filter(
finance.FUT_MEMBER_POSITION_RANK.code=='IC1906.CCFX',
finance.FUT_MEMBER_POSITION_RANK.rank_type_ID=='501003',
finance.FUT_MEMBER_POSITION_RANK.day==i).order_by(
finance.FUT_MEMBER_POSITION_RANK.member_name.desc())
df=finance.run_query(q)
for i in range(len(df)):
a = "中信期货"
if a in df.loc[i, 'member_name']:
a1 = df.loc[i, 'member_name']
a2 = df.loc[i, 'indicator']
a3 = df.loc[i, 'indicator_increase']
a4 = df.loc[i, 'code']
a5 = df.loc[i,'day']
c1.append(a1)
c2.append(a2)
c3.append(a3)
c4.append(a4)
c5.append(a5)
for i in range(len(df)):
a = "海通期货"
if a in df.loc[i, 'member_name']:
a1 = df.loc[i, 'member_name']
a2 = df.loc[i, 'indicator']
a3 = df.loc[i, 'indicator_increase']
a4 = df.loc[i, 'code']
a5 = df.loc[i, 'day']
c11.append(a1)
c12.append(a2)
c13.append(a3)
c14.append(a4)
c15.append(a5)
for i in range(len(df)):
a = "国泰君安"
if a in df.loc[i, 'member_name']:
a1 = df.loc[i, 'member_name']
a2 = df.loc[i, 'indicator']
a3 = df.loc[i, 'indicator_increase']
a4 = df.loc[i, 'code']
a5 = df.loc[i, 'day']
c21.append(a1)
c22.append(a2)
c23.append(a3)
c24.append(a4)
c25.append(a5)
for i in range(len(df)):
a = "华泰期货"
if a in df.loc[i, 'member_name']:
a1 = df.loc[i, 'member_name']
a2 = df.loc[i, 'indicator']
a3 = df.loc[i, 'indicator_increase']
a4 = df.loc[i, 'code']
a5 = df.loc[i, 'day']
c31.append(a1)
c32.append(a2)
c33.append(a3)
c34.append(a4)
c35.append(a5)
f2 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f2['day']=c5
f2[ 'member_name'] = c1
f2['indicator'] = c2
f2['indicator_increase']=c3
f2 = f2.set_index(['day'])
f12 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f12['day']=c15
f12[ 'member_name'] = c11
f12['indicator'] = c12
f12['indicator_increase']=c13
f12 = f12.set_index(['day'])
f22 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f22['day']=c25
f22[ 'member_name'] = c21
f22['indicator'] = c22
f22['indicator_increase']=c23
f22 = f22.set_index(['day'])
f32 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f32['day']=c35
f32[ 'member_name'] = c31
f32['indicator'] =c32
f32['indicator_increase']=c33
f32 = f32.set_index(['day'])
#501001-成交量排名
for k in date:
q=query(finance.FUT_MEMBER_POSITION_RANK.day,
finance.FUT_MEMBER_POSITION_RANK.code,
finance.FUT_MEMBER_POSITION_RANK.rank_type_ID,
finance.FUT_MEMBER_POSITION_RANK.rank,
finance.FUT_MEMBER_POSITION_RANK.member_name,
finance.FUT_MEMBER_POSITION_RANK.indicator,
finance.FUT_MEMBER_POSITION_RANK.indicator_increase,).filter(
finance.FUT_MEMBER_POSITION_RANK.code=='IC1906.CCFX',
finance.FUT_MEMBER_POSITION_RANK.rank_type_ID=='501001',
finance.FUT_MEMBER_POSITION_RANK.day==k).order_by(
finance.FUT_MEMBER_POSITION_RANK.member_name.desc())
df=finance.run_query(q)
for i in range(len(df)):
a = "中信期货"
if a in df.loc[i, 'member_name']:
a1 = df.loc[i, 'member_name']
a2 = df.loc[i, 'indicator']
a3 = df.loc[i, 'indicator_increase']
a4 = df.loc[i, 'code']
a5 = df.loc[i,'day']
d1.append(a1)
d2.append(a2)
d3.append(a3)
d4.append(a4)
d5.append(a5)
for i in range(len(df)):
a = "海通期货"
if a in df.loc[i, 'member_name']:
a1 = df.loc[i, 'member_name']
a2 = df.loc[i, 'indicator']
a3 = df.loc[i, 'indicator_increase']
a4 = df.loc[i, 'code']
a5 = df.loc[i, 'day']
d11.append(a1)
d12.append(a2)
d13.append(a3)
d14.append(a4)
d15.append(a5)
for i in range(len(df)):
a = "国泰君安"
if a in df.loc[i, 'member_name']:
a1 = df.loc[i, 'member_name']
a2 = df.loc[i, 'indicator']
a3 = df.loc[i, 'indicator_increase']
a4 = df.loc[i, 'code']
a5 = df.loc[i, 'day']
d21.append(a1)
d22.append(a2)
d23.append(a3)
d24.append(a4)
d25.append(a5)
for i in range(len(df)):
a = "华泰期货"
if a in df.loc[i, 'member_name']:
a1 = df.loc[i, 'member_name']
a2 = df.loc[i, 'indicator']
a3 = df.loc[i, 'indicator_increase']
a4 = df.loc[i, 'code']
a5 = df.loc[i, 'day']
d31.append(a1)
d32.append(a2)
d33.append(a3)
d34.append(a4)
d35.append(a5)
f3 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f3['day']=d5
f3[ 'member_name'] = d1
f3['indicator'] = d2
f3['indicator_increase']=d3
f3 = f3.set_index(['day'])
f13 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f13['day']=d15
f13[ 'member_name'] = d11
f13['indicator'] = d12
f13['indicator_increase']=d13
f13 = f13.set_index(['day'])
f23 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f23['day']=d25
f23[ 'member_name'] = d21
f23['indicator'] = d22
f23['indicator_increase']=d23
f23 = f23.set_index(['day'])
f33 = pd.DataFrame(columns=['day', 'member_name', 'indicator','indicator_increase'])
f33['day']=d35
f33[ 'member_name'] = d31
f33['indicator'] = d32
f33['indicator_increase']=d33
f33 = f33.set_index(['day'])
print(f2)
print(f12)
#1
N = len(f1)
ind = np.arange(N) # the evenly spaced plot indices
def format_date(x, pos=None):
#保证下标不越界,很重要,越界会导致最终plot坐标轴label无显示
thisind = np.clip(int(x+0.5), 0, N-1)
return f1.index[thisind].strftime('%Y-%m-%d')
N2 = len(f2)
ind2 = np.arange(N2) # the evenly spaced plot indices
N3 = len(f3)
ind3 = np.arange(N3) # the evenly spaced plot indices
#2
AN = len(f11)
Aind = np.arange(AN) # the evenly spaced plot indices
def Aformat_date(x, pos=None):
#保证下标不越界,很重要,越界会导致最终plot坐标轴label无显示
thisind = np.clip(int(x+0.5), 0, AN-1)
return f11.index[thisind].strftime('%Y-%m-%d')
AN2 = len(f12)
Aind2 = np.arange(AN2) # the evenly spaced plot indices
AN3 = len(f13)
Aind3 = np.arange(AN3) # the evenly spaced plot indices
#3
BN = len(f21)
Bind = np.arange(BN) # the evenly spaced plot indices
def Bformat_date(x, pos=None):
#保证下标不越界,很重要,越界会导致最终plot坐标轴label无显示
thisind = np.clip(int(x+0.5), 0, BN-1)
return f21.index[thisind].strftime('%Y-%m-%d')
BN2 = len(f22)
Bind2 = np.arange(BN2) # the evenly spaced plot indices
BN3 = len(f23)
Bind3 = np.arange(BN3) # the evenly spaced plot indices
#4
CN = len(f31)
Cind = np.arange(CN) # the evenly spaced plot indices
def Cformat_date(x, pos=None):
#保证下标不越界,很重要,越界会导致最终plot坐标轴label无显示
thisind = np.clip(int(x+0.5), 0, CN-1)
return f31.index[thisind].strftime('%Y-%m-%d')
CN2 = len(f32)
Cind2 = np.arange(CN2) # the evenly spaced plot indices
CN3 = len(f33)
Cind3 = np.arange(CN3) # the evenly spaced plot indices
fig = plt.figure(figsize=(15,10))
#1
ax1 = fig.add_subplot(2,2,1)
ax1.plot(ind,f1.indicator, color="red",label="持买单量", marker='.',alpha=0.8, linewidth=0.6)
ax1.set_title("IC1905 中信期货持仓情况")
for j in range(1, len(f1)):
plt.text(ind[j],f1.indicator[j], str(f1.indicator[j]), fontsize=10, va='bottom', color="red", wrap=True)
ax1.plot(ind2,f2.indicator, color="green",label="持卖单量", marker='.', alpha=0.8, linewidth=0.6)
for j in range(1, len(f2)):
plt.text(ind2[j],f2.indicator[j], str(f2.indicator[j]), fontsize=10, ha='right', color="green", wrap=True)
ax1.plot(ind3,f3.indicator, color="blue",label="当日成交量", marker='.', alpha=0.8, linewidth=0.6)
for j in range(1, len(f3)):
plt.text(ind3[j],f3.indicator[j], str(f3.indicator[j]), fontsize=10, ha='left', color="blue", wrap=True)
#2
bx1 = fig.add_subplot(2,2,2)
bx1.plot(Aind,f11.indicator, color="red",label="持买单量", marker='.',alpha=0.8, linewidth=0.6)
bx1.set_title("IC1905 海通期货持仓情况")
for j in range(1, len(f11)):
plt.text(Aind[j],f11.indicator[j], str(f11.indicator[j]), fontsize=10, va='bottom', color="red", wrap=True)
bx1.plot(Aind2,f12.indicator, color="green",label="持卖单量", marker='.',alpha=0.8, linewidth=0.6)
for j in range(1, len(f12)):
plt.text(Aind2[j],f12.indicator[j], str(f12.indicator[j]), fontsize=10, ha='right', color="green", wrap=True)
bx1.plot(Aind3,f13.indicator, color="blue",label="当日成交量",marker='.', alpha=0.8, linewidth=0.6)
for j in range(1, len(f13)):
plt.text(Aind3[j],f13.indicator[j], str(f13.indicator[j]), fontsize=10, ha='left', color="blue", wrap=True)
#3
cx1 = fig.add_subplot(2,2,3)
cx1.plot(Bind,f21.indicator, color="red",label="持买单量", marker='.',alpha=0.8, linewidth=0.6)
cx1.set_title("IC1905 国泰君安持仓情况")
for j in range(1, len(f21)):
plt.text(Bind[j],f21.indicator[j], str(f21.indicator[j]), fontsize=10, va='bottom', color="red", wrap=True)
cx1.plot(Bind2,f22.indicator, color="green",label="持卖单量",marker='.', alpha=0.8, linewidth=0.6)
for j in range(1, len(f22)):
plt.text(Bind2[j],f22.indicator[j], str(f22.indicator[j]), fontsize=10, ha='right', color="green", wrap=True)
cx1.plot(Bind3,f23.indicator, color="blue",label="当日成交量",marker='.', alpha=0.8, linewidth=0.6)
for j in range(1, len(f23)):
plt.text(Bind3[j],f23.indicator[j], str(f23.indicator[j]), fontsize=10, ha='left', color="blue", wrap=True)
#4
dx1 = fig.add_subplot(2,2,4)
dx1.plot(Cind,f31.indicator, color="red",label="持买单量", marker='.',alpha=0.8, linewidth=0.6)
dx1.set_title("IC1905 华泰期货持仓情况")
for j in range(1, len(f31)):
plt.text(Cind[j],f31.indicator[j], str(f31.indicator[j]), fontsize=10, va='bottom', color="red", wrap=True)
dx1.plot(Cind2,f32.indicator, color="green",label="持卖单量", marker='.',alpha=0.8, linewidth=0.6)
for j in range(1, len(f32)):
plt.text(Cind2[j],f32.indicator[j], str(f32.indicator[j]), fontsize=10, ha='right', color="green", wrap=True)
dx1.plot(Cind3,f33.indicator, color="blue",label="当日成交量",marker='.', alpha=0.8, linewidth=0.6)
for j in range(1, len(f33)):
plt.text(Cind3[j],f33.indicator[j], str(f33.indicator[j]), fontsize=10, ha='left', color="blue", wrap=True)
ax1.xaxis.set_major_formatter(ticker.FuncFormatter(format_date))
bx1.xaxis.set_major_formatter(ticker.FuncFormatter(Aformat_date))
cx1.xaxis.set_major_formatter(ticker.FuncFormatter(Bformat_date))
dx1.xaxis.set_major_formatter(ticker.FuncFormatter(Cformat_date))
fig.autofmt_xdate()
handles, labels = ax1.get_legend_handles_labels()
# reverse the order
ax1.legend(handles[::-1], labels[::-1])
handles, labels = bx1.get_legend_handles_labels()
# reverse the order
bx1.legend(handles[::-1], labels[::-1])
handles, labels = cx1.get_legend_handles_labels()
# reverse the order
cx1.legend(handles[::-1], labels[::-1])
handles, labels = dx1.get_legend_handles_labels()
# reverse the order
dx1.legend(handles[::-1], labels[::-1])
plt.savefig('IC1905.png')
plt.show()
r=pd.concat([price.close,
f1.indicator,
f2.indicator,
f3.indicator,
f11.indicator,
f12.indicator,
f13.indicator,
f21.indicator,
f22.indicator,
f23.indicator,
f31.indicator,
f32.indicator,
f33.indicator],axis=1)
r.columns = ['pct', 'citic_long','citic_short','citic_change',
'ht_long','ht_short','ht_change',
'gtja_long','gtja_short','gtja_change',
'ht_long','ht_short','ht_change']
r.to_csv('future_re.csv')
#2画图
import plotly.plotly as py
import plotly.graph_objs as go
import plotly
import plotly.graph_objs as go
import numpy as np
import pandas as pd
from jqdatasdk import *
auth('','')
import pandas as pd
import talib
df = pd.read_csv('future_re.csv')
future_jq= get_price('IF1906.CCFX', end_date='2019-05-17',count=50)
# remove min:sec:millisec from dates
'''for i, row in enumerate(df['Date']):
p = re.compile(' 00:00:00')
datetime = p.split(df['Date'][i])[0]
df.iloc[i, 1] = datetime'''
table_trace1 = go.Table(
domain=dict(x=[0, 0.5],
y=[0, 1]),
columnwidth = [20] + [20, 20, 20,20],
columnorder=[0, 1, 2, 3, 4,5],
header = dict(height = 50,
values = [['<b>Date</b>'],['<b>中信多仓</b>'],
['<b>中信空仓</b>'], ['<b>国泰君安<br>多仓</b>'],['<b>国泰君安<br>空仓</b>']],
line = dict(color='rgb(50, 50, 50)'),
align = ['left'] * 5,
font = dict(color=['rgb(45, 45, 45)'] * 6, size=14),
fill = dict(color='#d562be')),
cells = dict(values = [df[k].tolist() for k in
['date', 'citic_long', 'citic_short', 'gtja_long','gtja_short']],
line = dict(color='#506784'),
align = ['left'] * 6,
font = dict(color=['rgb(40, 40, 40)'] * 6, size=12),
format = [None] + [", .2f"] *4 ,
prefix = [None] * 5 ,
suffix=[None] * 5,
height = 27,
fill = dict(color=['rgb(235, 193, 238)', 'rgba(228, 222, 249, 0.65)']))
)
trace1 =go.Scatter(
x=df['date'],
y=df['citic_short'],
xaxis='x1',
yaxis='y1',
mode='lines',
line=dict(width=2, color='#509BFF'),
name='中信空仓'
)
trace11=go.Scatter(
x=df['date'],
y=df['citic_long'],
xaxis='x1',
yaxis='y1',
mode='lines',
line=dict(width=2, color='#FF5108'),
name='中信多仓'
)
trace12=go.Scatter(
x=df['date'],
y=df['citic_change'],
xaxis='x1',
yaxis='y1',
mode='lines',
line=dict(width=2, dash = 'dot',color='#595959'),
name='中信换手'
)
trace2=go.Scatter(
x=df['date'],
y=df['gtja_long'],
xaxis='x2',
yaxis='y2',
mode='lines',
line=dict(width=2, color='#FF5108'),
name='国泰君安空仓'
)
trace21 =go.Scatter(
x=df['date'],
y=df['gtja_change'],
xaxis='x2',
yaxis='y2',
mode='lines',
line=dict(width=2,dash = 'dot', color='#595959'),
name='国泰君安换手'
)
trace22 =go.Scatter(
x=df['date'],
y=df['gtja_short'],
xaxis='x2',
yaxis='y2',
mode='lines',
line=dict(width=2, color='#509BFF'),
name='国泰君安多仓'
)
trace3 = go.Candlestick(x=future_jq.index,
xaxis='x3',
yaxis='y3',
open=future_jq.open,
high=future_jq.high,
low=future_jq.low,
close=future_jq.close,
name = "IC1906",
increasing=dict(line=dict(color='#FF2131')),
decreasing=dict(line=dict(color='#00CCFF'))
)
trace31 =go.Scatter(
x=future_jq.index,
y=talib.MA(future_jq.close,5),
xaxis='x3',
yaxis='y3',
mode='lines',
line=dict(width=2, color='#9748a1'),
name='MA5'
)
trace32 =go.Scatter(
x=future_jq.index,
y=talib.MA(future_jq.close,20),
xaxis='x3',
yaxis='y3',
mode='lines',
line=dict(width=2, color='#b04553'),
name='MA20'
)
axis=dict(
showline=True,
zeroline=False,
showgrid=True,
mirror=True,
ticklen=4,
gridcolor='#ffffff',
tickfont=dict(size=10)
)
layout1 = dict(
width=950,
height=800,
autosize=False,
title='IC1906持仓情况',
margin = dict(t=100),
showlegend=False,
xaxis1=dict(axis, **dict(domain=[0.55, 1], anchor='y1', showticklabels=False)),
xaxis2=dict(axis, **dict(domain=[0.55, 1], anchor='y2', showticklabels=False)),
xaxis3=dict(axis, **dict(domain=[0.55, 1], anchor='y3')),
yaxis1=dict(axis, **dict(domain=[0.66, 1.0], anchor='x1')),
yaxis2=dict(axis, **dict(domain=[0.3 + 0.03, 0.63], anchor='x2')),
yaxis3=dict(axis, **dict(domain=[0.0, 0.3], anchor='x3')),
plot_bgcolor='rgba(228, 222, 249, 0.65)'
)
#tickprefix='$',
fig1 = dict(data=[table_trace1, trace1,trace11,trace12,trace2,trace21,trace22, trace3,trace31,trace32 ], layout=layout1)
plotly.offline.plot(fig1, filename='table.html')
本社区仅针对特定人员开放
查看需注册登录并通过风险意识测评
5秒后跳转登录页面...
移动端课程