请 [注册] 或 [登录]  | 返回主站

量化交易吧 /  数理科学 帖子:3364712 新帖:0

半年涨3倍以上牛股大盘点(最近5年, 附聚宽源码可画图)

EA发表于:5 月 17 日 21:16回复(1)

半年涨3倍以上牛股大盘点(最近5年, 附聚宽源码, 可画图)¶

最近5年, 移动183天内按日线线收盘价, 最高/最低 - 1 >= 300%.

2014-05-18到2019-05-17, 正好包含上轮牛市, 不太过时.

183天(以125个交易日近似), 300%参照了近期的龙头股"正邦科技".

image.png 大多数人没时间看源码, 所以放在最后面. 鸣谢聚宽客服(微信号jqdata01)约稿, 为JQ打call! 需要转载或者具体数据的, 就加微信号jqdata01.

一共有多少只大牛股, 能涨的如此气壮山河?

牛股家数439, 涨幅中位数399.72%

仔细研究或许有些启发

print(bull_stks.head(40))
             代码     名称          起始          终止       涨幅
1   300431.XSHE   暴风集团  2015-03-24  2016-03-29  2262.72
2   603019.XSHG   中科曙光  2014-11-06  2015-05-29  1818.96
3   002625.XSHE   光启技术  2014-05-08  2015-05-13  1759.27
4   002506.XSHE   协鑫集成  2014-01-09  2015-12-28  1553.62
5   300348.XSHE   长亮科技  2014-06-05  2015-06-05  1450.20
6   603169.XSHG   兰石重装  2014-10-10  2015-05-06  1267.48
7   000626.XSHE   远大控股  2014-09-04  2015-05-22  1217.23
8   002044.XSHE   美年健康  2014-06-20  2015-06-11  1148.28
9   300399.XSHE    京天利  2014-10-09  2015-04-17   977.69
10  300666.XSHE   江丰电子  2017-06-15  2017-12-22   975.41
11  002558.XSHE   巨人网络  2014-05-23  2015-12-15   958.57
12  300350.XSHE    华鹏飞  2014-05-20  2015-06-12   957.23
13  300085.XSHE    银之杰  2014-10-10  2015-06-03   955.40
14  300059.XSHE   东方财富  2014-08-14  2015-04-30   951.63
15  300364.XSHE   中文在线  2015-01-22  2015-08-13   943.06
16  300033.XSHE    同花顺  2014-11-05  2015-05-12   927.96
17  300359.XSHE   全通教育  2014-04-29  2015-03-24   907.83
18  300451.XSHE   创业慧康  2015-05-14  2015-11-17   895.21
19  000676.XSHE   智度股份  2014-06-20  2015-11-20   877.29
20  300618.XSHE   寒锐钴业  2017-03-06  2017-09-06   868.04
21  300248.XSHE    新开普  2014-07-28  2015-05-18   844.84
22  601882.XSHG   海天精工  2016-11-07  2017-05-17   839.91
23  300208.XSHE   青岛中程  2014-09-18  2015-05-21   826.80
24  600571.XSHG    信雅达  2014-08-15  2015-06-04   822.25
25  600986.XSHG   科达股份  2014-07-02  2015-06-02   816.47
26  603600.XSHG   永艺股份  2015-01-23  2015-07-29   804.77
27  300469.XSHE   信息发展  2015-06-11  2015-12-16   798.88
28  600701.XSHG  *ST工新  2014-05-29  2015-06-10   796.84
29  002751.XSHE   易尚展示  2015-04-24  2015-11-04   795.47
30  600903.XSHG   贵州燃气  2017-11-07  2018-05-23   793.71
31  300496.XSHE   中科创达  2015-12-10  2016-06-16   790.61
32  300676.XSHE   华大基因  2017-07-14  2018-01-29   780.91
33  002785.XSHE    万里石  2015-12-23  2016-06-29   772.12
34  300459.XSHE   金科文化  2015-05-15  2016-03-31   758.39
35  600053.XSHG   九鼎投资  2014-08-28  2015-12-21   745.58
36  601608.XSHG   中信重工  2014-08-11  2015-05-28   741.63
37  300446.XSHE   乐凯新材  2015-04-23  2015-10-28   735.39
38  601299.XSHG   中国北车  2014-07-22  2015-04-17   714.83
39  002517.XSHE   恺英网络  2013-12-31  2015-06-15   712.74
40  603533.XSHG   掌阅科技  2017-09-21  2018-04-03   708.93

这里依旧看到了我们的轻资产券商老朋友: 同花顺, 东方财富, 一对好基友, 排名都这么接近.

print(bull_stks.head(80).tail(40))
             代码     名称          起始          终止      涨幅
41  300571.XSHE   平治信息  2016-12-13  2017-06-21  708.51
42  002657.XSHE   中科金财  2014-10-13  2015-05-12  695.52
43  300649.XSHE   杭州园林  2017-05-05  2017-11-14  689.80
44  002027.XSHE   分众传媒  2014-12-30  2015-11-20  688.73
45  002782.XSHE    可立克  2015-12-23  2016-06-29  688.20
46  000796.XSHE   凯撒旅游  2014-04-28  2015-06-11  685.15
47  300380.XSHE   安硕信息  2014-11-05  2015-05-12  673.48
48  600776.XSHG   东方通信  2018-10-17  2019-04-22  669.44
49  300159.XSHE   新研股份  2014-08-11  2015-06-01  663.33
50  601766.XSHG   中国中车  2014-07-22  2015-04-17  656.31
51  300708.XSHE   聚灿光电  2017-10-16  2018-04-19  653.33
52  300063.XSHE   天龙集团  2014-06-19  2015-05-21  652.69
53  000025.XSHE    特力A  2015-07-08  2016-01-19  648.35
54  300725.XSHE   药石科技  2017-11-10  2018-05-25  640.14
55  300491.XSHE   通合科技  2015-12-31  2016-07-07  636.10
56  300484.XSHE   蓝海华腾  2016-03-22  2016-09-21  633.68
57  300506.XSHE    名家汇  2016-03-24  2016-09-23  625.97
58  002777.XSHE   久远银海  2015-12-31  2016-07-21  617.08
59  300603.XSHE   立昂技术  2017-01-26  2017-11-29  614.57
60  601390.XSHG   中国中铁  2014-10-14  2015-04-28  601.62
61  300601.XSHE   康泰生物  2017-02-07  2017-08-08  598.42
62  300675.XSHE    建科院  2017-07-19  2018-01-18  593.71
63  002491.XSHE   通鼎互联  2014-07-24  2015-05-22  589.82
64  002800.XSHE   天顺股份  2016-05-30  2016-12-02  585.35
65  000005.XSHE   世纪星源  2014-07-17  2015-05-29  581.90
66  002771.XSHE    真视通  2015-06-29  2015-12-30  580.35
67  300450.XSHE   先导智能  2015-05-18  2015-11-19  575.00
68  300383.XSHE   光环新网  2015-02-12  2015-12-08  573.68
69  300299.XSHE   富春股份  2014-12-09  2015-11-11  567.62
70  603918.XSHG   金桥信息  2015-05-28  2015-12-01  564.65
71  002175.XSHE  *ST东网  2014-11-13  2015-06-03  560.34
72  002631.XSHE   德尔未来  2014-12-09  2015-06-17  556.53
73  300186.XSHE    大华农  2014-07-31  2015-06-02  548.05
74  002622.XSHE   融钰集团  2014-11-18  2015-05-25  547.83
75  300140.XSHE   中环装备  2014-09-02  2015-05-27  547.61
76  002326.XSHE   永太科技  2014-11-11  2015-05-25  545.61
77  300109.XSHE    新开源  2014-06-04  2015-05-12  543.97
78  002636.XSHE   金安国纪  2014-12-12  2015-06-18  538.14
79  300493.XSHE   润欣科技  2015-12-10  2016-06-16  538.14
80  300466.XSHE   赛摩电气  2015-05-28  2016-05-03  537.87

来看看2018年以来有哪些牛股, 后悔药吃饱了再往下看哦

print(bull_stks[bull_stks['起始'].values >= '2018-01-01'])
              代码     名称          起始          终止      涨幅
48   600776.XSHG   东方通信  2018-10-17  2019-04-22  669.44
85   002194.XSHE  *ST凡谷  2018-10-12  2019-04-17  529.16
95   002157.XSHE   正邦科技  2018-10-19  2019-04-24  517.96
107  000723.XSHE   美锦能源  2018-10-15  2019-04-18  500.30
132  600604.XSHG   市北高新  2018-10-18  2019-04-23  466.13
170  002565.XSHE   顺灏股份  2018-10-15  2019-04-18  437.69
175  600218.XSHG   全柴动力  2018-10-17  2019-04-22  434.74
205  002547.XSHE   春兴精工  2018-10-22  2019-04-25  408.47
212  603383.XSHG   顶点软件  2018-10-11  2019-04-16  406.71
257  600975.XSHG    新五丰  2018-10-19  2019-04-24  380.80
311  002017.XSHE   东信和平  2018-08-20  2019-03-08  349.80
315  002124.XSHE   天邦股份  2018-08-21  2019-03-19  348.81
366  601066.XSHG   中信建投  2018-10-18  2019-04-23  325.35
393  603000.XSHG    人民网  2018-10-16  2019-04-19  318.39
407  002733.XSHE   雄韬股份  2018-10-19  2019-04-24  315.19

接下来就要看K线图了, 还没有行情软件那么方便. 需要逐个手工输入代码和日期, 再运行. 等我有空给大家做个牛股图集吧.

---------------------- 以下是源码 ------------------------

import pandas as pd

from talib import ROC
from datetime import timedelta
from datetime import datetime as dt

N_INCR_DAYS = 125      # 滚动天数, 近似为半年自然日
THRESHOLD_INCR = 300   # 涨幅阈值

start_date = (dt.now() - timedelta(days=round(5.5 * 365))).strftime('%Y-%m-%d')
end_date = dt.now().strftime('%Y-%m-%d')
all_sec = get_all_securities()

print(start_date, end_date, len(all_sec)) 

bull_stks = []
for stk, stk_name in zip(all_sec.index.values, 
        all_sec['display_name'].values):
    w_k = get_price(stk, start_date=start_date, end_date=end_date,
        frequency='1d', fq='pre', fields='close', skip_paused=True)
    if len(w_k) < N_INCR_DAYS + 1:
        continue
        
    roc = np.round(ROC(w_k['close'].values, N_INCR_DAYS), 2)
    
    if np.nanmax(roc) < THRESHOLD_INCR:
        continue
        
    days = [str(d)[:10] for d in w_k.index.values] 
    
    loc = np.nanargmax(roc)
    bull_stks += [[stk, stk_name, days[loc - N_INCR_DAYS], days[loc], roc[loc]]]

cols = ['代码', '名称', '起始', '终止', '涨幅']
bull_stks = pd.DataFrame(bull_stks, columns=cols)
bull_stks.sort_values(by=['涨幅'], ascending=False, inplace=True)
bull_stks.index.values[:] = np.arange(1, len(bull_stks) + 1)

print('牛股家数{}, 涨幅中位数{}%'.format(len(bull_stks), 
    np.median(bull_stks['涨幅'].values)))

print(bull_stks)
bull_stks.to_csv('半年3倍牛股名单.csv', float_format='%.2f', encoding='utf-8')
2013-11-16 2019-05-17 3694
牛股家数439, 涨幅中位数399.72%
              代码     名称          起始          终止       涨幅
1    300431.XSHE   暴风集团  2015-03-24  2016-03-29  2262.72
2    603019.XSHG   中科曙光  2014-11-06  2015-05-29  1818.96
3    002625.XSHE   光启技术  2014-05-08  2015-05-13  1759.27
4    002506.XSHE   协鑫集成  2014-01-09  2015-12-28  1553.62
5    300348.XSHE   长亮科技  2014-06-05  2015-06-05  1450.20
6    603169.XSHG   兰石重装  2014-10-10  2015-05-06  1267.48
7    000626.XSHE   远大控股  2014-09-04  2015-05-22  1217.23
8    002044.XSHE   美年健康  2014-06-20  2015-06-11  1148.28
9    300399.XSHE    京天利  2014-10-09  2015-04-17   977.69
10   300666.XSHE   江丰电子  2017-06-15  2017-12-22   975.41
11   002558.XSHE   巨人网络  2014-05-23  2015-12-15   958.57
12   300350.XSHE    华鹏飞  2014-05-20  2015-06-12   957.23
13   300085.XSHE    银之杰  2014-10-10  2015-06-03   955.40
14   300059.XSHE   东方财富  2014-08-14  2015-04-30   951.63
15   300364.XSHE   中文在线  2015-01-22  2015-08-13   943.06
16   300033.XSHE    同花顺  2014-11-05  2015-05-12   927.96
17   300359.XSHE   全通教育  2014-04-29  2015-03-24   907.83
18   300451.XSHE   创业慧康  2015-05-14  2015-11-17   895.21
19   000676.XSHE   智度股份  2014-06-20  2015-11-20   877.29
20   300618.XSHE   寒锐钴业  2017-03-06  2017-09-06   868.04
21   300248.XSHE    新开普  2014-07-28  2015-05-18   844.84
22   601882.XSHG   海天精工  2016-11-07  2017-05-17   839.91
23   300208.XSHE   青岛中程  2014-09-18  2015-05-21   826.80
24   600571.XSHG    信雅达  2014-08-15  2015-06-04   822.25
25   600986.XSHG   科达股份  2014-07-02  2015-06-02   816.47
26   603600.XSHG   永艺股份  2015-01-23  2015-07-29   804.77
27   300469.XSHE   信息发展  2015-06-11  2015-12-16   798.88
28   600701.XSHG  *ST工新  2014-05-29  2015-06-10   796.84
29   002751.XSHE   易尚展示  2015-04-24  2015-11-04   795.47
30   600903.XSHG   贵州燃气  2017-11-07  2018-05-23   793.71
..           ...    ...         ...         ...      ...
410  300031.XSHE   宝通科技  2014-12-15  2015-11-25   313.41
411  600896.XSHG   览海投资  2014-10-23  2015-06-25   312.50
412  000717.XSHE   韶钢松山  2014-11-26  2015-06-02   312.10
413  600240.XSHG  *ST华业  2014-08-06  2015-05-25   311.18
414  300023.XSHE   宝德股份  2015-09-15  2016-03-23   310.97
415  002160.XSHE   常铝股份  2014-07-21  2015-06-08   310.58
416  600458.XSHG   时代新材  2014-09-17  2015-06-05   309.81
417  603322.XSHG   超讯通信  2016-07-28  2017-02-07   309.37
418  300378.XSHE   鼎捷软件  2014-11-19  2015-05-26   309.36
419  300609.XSHE   汇纳科技  2017-02-15  2017-08-16   308.49
420  601558.XSHG   ST锐电  2014-11-14  2015-06-12   307.06
421  603131.XSHG   上海沪工  2016-06-07  2016-12-12   306.84
422  300222.XSHE   科大智能  2014-09-25  2015-06-04   306.23
423  603318.XSHG   派思股份  2015-04-24  2015-11-03   306.11
424  000034.XSHE   神州数码  2014-12-24  2015-12-23   306.07
425  600570.XSHG   恒生电子  2014-09-10  2015-04-13   305.82
426  300288.XSHE   朗玛信息  2014-04-02  2014-12-25   305.16
427  000516.XSHE   国际医学  2014-10-08  2015-04-23   304.53
428  600556.XSHG   ST慧球  2014-02-27  2014-12-29   303.50
429  000058.XSHE    深赛格  2014-12-12  2015-06-18   303.41
430  002915.XSHE   中欣氟材  2017-12-05  2018-06-19   303.25
431  002675.XSHE   东诚药业  2014-05-16  2015-06-04   302.60
432  300657.XSHE   弘信电子  2017-05-23  2018-01-12   302.33
433  002170.XSHE   芭田股份  2014-08-08  2015-05-14   302.11
434  603311.XSHG   金海环境  2015-05-18  2015-11-19   301.18
435  002632.XSHE   道明光学  2014-12-09  2015-06-15   301.16
436  603165.XSHG   荣晟环保  2017-01-17  2017-07-25   301.07
437  002735.XSHE   王子新材  2014-12-03  2015-06-09   300.84
438  300229.XSHE    拓尔思  2014-11-28  2015-06-04   300.34
439  603021.XSHG   山东华鹏  2015-04-23  2015-11-11   300.21

[439 rows x 5 columns]
print(bull_stks[bull_stks['起始'].values >= '2018-01-01'])
              代码     名称          起始          终止      涨幅
48   600776.XSHG   东方通信  2018-10-17  2019-04-22  669.44
85   002194.XSHE  *ST凡谷  2018-10-12  2019-04-17  529.16
95   002157.XSHE   正邦科技  2018-10-19  2019-04-24  517.96
107  000723.XSHE   美锦能源  2018-10-15  2019-04-18  500.30
132  600604.XSHG   市北高新  2018-10-18  2019-04-23  466.13
170  002565.XSHE   顺灏股份  2018-10-15  2019-04-18  437.69
175  600218.XSHG   全柴动力  2018-10-17  2019-04-22  434.74
205  002547.XSHE   春兴精工  2018-10-22  2019-04-25  408.47
212  603383.XSHG   顶点软件  2018-10-11  2019-04-16  406.71
257  600975.XSHG    新五丰  2018-10-19  2019-04-24  380.80
311  002017.XSHE   东信和平  2018-08-20  2019-03-08  349.80
315  002124.XSHE   天邦股份  2018-08-21  2019-03-19  348.81
366  601066.XSHG   中信建投  2018-10-18  2019-04-23  325.35
393  603000.XSHG    人民网  2018-10-16  2019-04-19  318.39
407  002733.XSHE   雄韬股份  2018-10-19  2019-04-24  315.19
# 下面画图代码来自社区帖子 
# https://www.joinquant.com/view/community/detail/81d0e041f08b5e0a61172d6267f9f342?type=1

#pyecharts文档请见http://pyecharts.org
from pyecharts import Kline, online,Overlap,Scatter,Style,Line,Grid,Bar
import talib
    
stk_code = '600975.XSHG'  # 深圳后缀改为.XSHE
start_date = '2018-10-19'
end_date = '2019-04-24'

class Kshow:
    def __init__(self,stock_name,jsPath='https://cdn.bootcss.com/echarts/4.1.0.rc2'):
        #使用最新的echarts js文件
        online(jsPath)
        #K线
        self.kline=Kline(stock_name)
        #macd line,即dif、dea
        self.macd_line=Line('')
        self.macd_bar=Bar('')
    
    def chart_init(self,data_df,show_BI=True,show_Line=True,show_Center=True):
        #获取K线数据
        def get_K_data(df):
            kdata=df.loc[:,['open','close','low','high']].to_dict('split')['data']
            xaxis=[str(d)[:10] for d in df.index.values]
            return xaxis,kdata
        #获取MACD数据
        def get_macd_data(df):
            dif=[l[1] for l in df.dif.iteritems()]
            dea=[l[1] for l in df.dea.iteritems()]
            macd_z=[l for l in df[df.macd>=0].macd.iteritems()]
            macd_f=[l for l in df[df.macd<0].macd.iteritems()]
            return dif,dea,macd_z,macd_f
        
        kx,ky=get_K_data(data_df)
        #添加K线,is_datazoom_show显示时间轴,datazoom_range时间轴范围
        self.kline.add('K',kx,ky,is_datazoom_show=True,datazoom_range=[80,100])
        #修改K线颜色
        self.kline._option['series'][0]['itemStyle']={'normal':{'color':'#ef232a', 'color0': '#14b143','borderColor': '#ef232a', 'borderColor0': '#14b143'}}
        
        dif,dea,macd_z,macd_f=get_macd_data(data_df)
        self.macd_bar.add('macd_z',[t for t,v in macd_z],macd_z,is_datazoom_show=True)
        self.macd_bar.add('macd_f',[t for t,v in macd_f],macd_f,is_datazoom_show=True)
        self.macd_line.add('dif',kx,dif,is_datazoom_show=True, xaxis_type='category',line_width =1,
                           is_symbol_show=False,is_fill=False)
        self.macd_line.add('dea',kx,dea,is_datazoom_show=True, xaxis_type='category',line_width =1,
                           is_symbol_show=False,is_fill=False)
        
        #这个应该是目前版本pyechart的bug,导致区域填充,删除后只显示线
        del chart.macd_line._option['series'][0]['areaStyle']
        del chart.macd_line._option['series'][1]['areaStyle']
    
    #主图
    def get_main_chart(self,height=600,width=1000):
        overlap = Overlap(height=height,width=height)
        overlap.add(self.kline)
        
        return overlap
    
    #辅图
    def get_macd_chart(self,height=200,width=1000):
        overlap = Overlap(height=height,width=height)
        overlap.add(self.macd_line)
        overlap.add(self.macd_bar)
        return overlap
    
    #获取图,并显示
    def show_chart(self,zoom_start=50,height=600,width=1000):
        grid = Grid(height=height,width =width)
        
        main_ov=self.get_main_chart(height-200,width)
        macd_ov=self.get_macd_chart(200,width)
        
        grid.add(main_ov,grid_top=0,grid_bottom=220)
        grid.add(macd_ov,grid_top=height-200)
        
        grid._option['dataZoom'][0]['xAxisIndex']=[0, 1]
        grid._option['dataZoom'][0]['start']=zoom_start
        grid._option['xAxis'][1]['show']=False
        grid._option['legend'][1]['show']=False
        grid._option['color']=['#145b7d','#e0861a','#ef232a','#14b143'] #DIF,DEA,MACD正,MACD负
        return grid

# 股票代码
stock= stk_code
#名称
stock_name=get_security_info(stock).display_name
#获取dataframe
df=get_price(stock, start_date=start_date, end_date=end_date,
             fields=['open','close','high','low'], frequency='1d')

#计算macd
df['dif'],df['dea'],df['macd']=talib.MACD(df.close.values, 
                                        fastperiod=12 , 
                                        slowperiod=26, 
                                        signalperiod=9 )
#macd最开始一段数据不准,移除
# df=df.iloc[100:,:]
#初始化画图函数
chart=Kshow(stock[:6]+' '+stock_name)
#初始化数据
chart.chart_init(df)
#显示图表
chart.show_chart(height=600,width=1000)     
require.config({ paths: { 'echarts': 'https://cdn.bootcss.com/echarts/4.1.0.rc2/echarts.min' } });
require(['echarts'], function(echarts) { var myChart_acbb49e2120f45798d5d0925ed5f0e20 = echarts.init(document.getElementById('acbb49e2120f45798d5d0925ed5f0e20'), 'light', {renderer: 'canvas'}); function kline_tooltip_formatter(params) { var text; text = ((((((((((((params[0].seriesName + "<br/>") + "- open:") + params[0].data[1]) + "<br/>") + "- close:") + params[0].data[2]) + "<br/>") + "- lowest:") + params[0].data[3]) + "<br/>") + "- highest:") + params[0].data[4]); return text; } var option_acbb49e2120f45798d5d0925ed5f0e20 = { "title": [ { "text": "600975 \u65b0\u4e94\u4e30", "left": "auto", "top": "auto", "textStyle": { "fontSize": 18 }, "subtextStyle": { "fontSize": 12 } }, { "left": "auto", "top": "auto", "textStyle": { "fontSize": 18 }, "subtextStyle": { "fontSize": 12 } } ], "toolbox": { "show": true, "orient": "vertical", "left": "95%", "top": "center", "feature": { "saveAsImage": { "show": true, "title": "save as image" }, "restore": { "show": true, "title": "restore" }, "dataView": { "show": true, "title": "data view" } } }, "series_id": 7464302, "tooltip": { "trigger": "axis", "triggerOn": "mousemove|click", "axisPointer": { "type": "line" }, "formatter": kline_tooltip_formatter, "textStyle": { "fontSize": 14 }, "backgroundColor": "rgba(50,50,50,0.7)", "borderColor": "#333", "borderWidth": 0 }, "series": [ { "type": "candlestick", "name": "K", "data": [ [ 3.18, 3.23, 3.09, 3.24 ], [ 3.26, 3.36, 3.25, 3.42 ], [ 3.33, 3.33, 3.27, 3.37 ], [ 3.25, 3.31, 3.25, 3.35 ], [ 3.28, 3.26, 3.16, 3.28 ], [ 3.3, 3.33, 3.3, 3.36 ], [ 3.33, 3.28, 3.2, 3.33 ], [ 3.23, 3.32, 3.23, 3.33 ], [ 3.32, 3.37, 3.3, 3.38 ], [ 3.4, 3.38, 3.35, 3.4 ], [ 3.39, 3.45, 3.38, 3.46 ], [ 3.43, 3.55, 3.4, 3.55 ], [ 3.53, 3.72, 3.49, 3.9 ], [ 3.61, 3.62, 3.6, 3.81 ], [ 3.62, 3.6, 3.59, 3.71 ], [ 3.6, 3.51, 3.51, 3.6 ], [ 3.51, 3.6, 3.51, 3.62 ], [ 3.57, 3.7, 3.56, 3.72 ], [ 3.67, 3.69, 3.67, 3.77 ], [ 3.73, 3.73, 3.68, 3.77 ], [ 3.77, 3.77, 3.76, 3.84 ], [ 3.81, 3.77, 3.73, 3.82 ], [ 3.77, 3.67, 3.66, 3.83 ], [ 3.65, 3.7, 3.58, 3.71 ], [ 3.72, 3.68, 3.67, 3.73 ], [ 3.71, 3.53, 3.49, 3.71 ], [ 3.48, 3.5, 3.48, 3.57 ], [ 3.51, 3.53, 3.51, 3.56 ], [ 3.53, 3.61, 3.48, 3.62 ], [ 3.61, 3.65, 3.61, 3.74 ], [ 3.62, 3.75, 3.58, 3.81 ], [ 3.76, 3.89, 3.67, 3.92 ], [ 3.85, 3.83, 3.76, 3.87 ], [ 3.75, 3.98, 3.71, 4.02 ], [ 3.96, 3.92, 3.9, 4.09 ], [ 3.91, 3.87, 3.81, 3.94 ], [ 3.85, 3.8, 3.79, 3.89 ], [ 3.81, 3.82, 3.75, 3.84 ], [ 3.8, 3.8, 3.76, 3.81 ], [ 3.82, 3.77, 3.68, 3.83 ], [ 3.75, 3.63, 3.58, 3.76 ], [ 3.6, 3.56, 3.51, 3.6 ], [ 3.56, 3.51, 3.5, 3.58 ], [ 3.54, 3.43, 3.39, 3.55 ], [ 3.44, 3.46, 3.42, 3.48 ], [ 3.45, 3.49, 3.44, 3.53 ], [ 3.52, 3.54, 3.48, 3.55 ], [ 3.5, 3.41, 3.3, 3.51 ], [ 3.43, 3.4, 3.34, 3.43 ], [ 3.45, 3.36, 3.36, 3.48 ], [ 3.36, 3.38, 3.35, 3.4 ], [ 3.38, 3.41, 3.38, 3.42 ], [ 3.41, 3.41, 3.37, 3.45 ], [ 3.39, 3.47, 3.37, 3.49 ], [ 3.49, 3.64, 3.48, 3.64 ], [ 3.68, 3.6, 3.58, 3.69 ], [ 3.58, 3.58, 3.57, 3.65 ], [ 3.58, 3.56, 3.55, 3.61 ], [ 3.56, 3.66, 3.55, 3.69 ], [ 3.62, 3.75, 3.62, 4.0 ], [ 3.82, 3.77, 3.71, 3.85 ], [ 3.79, 3.76, 3.74, 3.85 ], [ 3.74, 3.8, 3.74, 3.85 ], [ 3.8, 3.85, 3.77, 3.88 ], [ 3.83, 3.82, 3.8, 3.94 ], [ 3.82, 3.78, 3.76, 3.84 ], [ 3.77, 3.92, 3.76, 3.97 ], [ 3.92, 4.04, 3.9, 4.13 ], [ 4.02, 3.99, 3.98, 4.05 ], [ 4.0, 4.03, 3.99, 4.05 ], [ 4.05, 4.11, 3.91, 4.16 ], [ 4.15, 4.06, 4.02, 4.17 ], [ 4.05, 4.03, 3.97, 4.14 ], [ 4.05, 4.06, 4.03, 4.11 ], [ 4.05, 4.47, 4.05, 4.47 ], [ 4.69, 4.53, 4.38, 4.75 ], [ 4.49, 4.78, 4.46, 4.97 ], [ 4.73, 5.26, 4.66, 5.26 ], [ 5.26, 5.79, 5.17, 5.79 ], [ 6.37, 6.37, 6.37, 6.37 ], [ 6.88, 6.9, 6.4, 7.01 ], [ 6.73, 7.1, 6.73, 7.5 ], [ 6.88, 7.4, 6.78, 7.75 ], [ 7.21, 7.18, 7.02, 7.49 ], [ 7.09, 7.35, 6.84, 7.5 ], [ 7.31, 7.5, 7.2, 7.89 ], [ 7.2, 6.75, 6.75, 7.24 ], [ 6.58, 6.65, 6.44, 6.78 ], [ 6.68, 6.71, 6.6, 6.85 ], [ 6.92, 7.38, 6.92, 7.38 ], [ 7.52, 7.72, 7.34, 7.99 ], [ 7.55, 7.7, 7.24, 7.72 ], [ 7.7, 8.18, 7.7, 8.26 ], [ 7.69, 9.0, 7.55, 9.0 ], [ 9.69, 9.9, 8.49, 9.9 ], [ 9.01, 10.53, 9.01, 10.76 ], [ 10.5, 10.0, 9.8, 11.49 ], [ 9.55, 9.3, 9.0, 9.9 ], [ 9.6, 9.31, 9.16, 9.81 ], [ 9.79, 9.89, 9.12, 10.18 ], [ 9.96, 10.88, 9.59, 10.88 ], [ 11.15, 10.4, 9.8, 11.45 ], [ 10.58, 10.6, 9.98, 10.82 ], [ 10.5, 10.0, 9.64, 10.51 ], [ 9.52, 9.58, 9.43, 10.0 ], [ 9.9, 9.88, 9.7, 10.25 ], [ 9.77, 9.96, 9.5, 10.16 ], [ 9.79, 10.2, 9.63, 10.56 ], [ 10.2, 11.22, 10.08, 11.22 ], [ 11.78, 12.34, 11.68, 12.34 ], [ 13.57, 13.28, 12.61, 13.57 ], [ 12.9, 12.99, 12.5, 13.23 ], [ 13.08, 14.29, 12.65, 14.29 ], [ 14.89, 15.2, 14.06, 15.72 ], [ 14.88, 14.47, 13.98, 15.19 ], [ 14.08, 13.88, 13.45, 14.38 ], [ 13.9, 14.07, 13.4, 14.85 ], [ 13.79, 14.79, 13.59, 15.38 ], [ 14.8, 14.11, 13.96, 15.55 ], [ 13.71, 13.95, 13.08, 14.35 ], [ 13.8, 14.63, 13.56, 15.0 ], [ 14.4, 14.29, 14.11, 15.1 ], [ 14.04, 14.32, 14.04, 14.53 ], [ 14.42, 15.75, 14.42, 15.75 ], [ 15.93, 15.26, 14.9, 16.32 ], [ 15.2, 15.53, 14.93, 15.84 ] ], "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 7464302, "itemStyle": { "normal": { "color": "#ef232a", "color0": "#14b143", "borderColor": "#ef232a", "borderColor0": "#14b143" } }, "xAxisIndex": 0, "yAxisIndex": 0 }, { "type": "line", "name": "dif", "symbol": "emptyCircle", "symbolSize": 4, "smooth": false, "step": false, "showSymbol": false, "data": [ [ "2018-10-19", NaN ], [ "2018-10-22", NaN ], [ "2018-10-23", NaN ], [ "2018-10-24", NaN ], [ "2018-10-25", NaN ], [ "2018-10-26", NaN ], [ "2018-10-29", NaN ], [ "2018-10-30", NaN ], [ "2018-10-31", NaN ], [ "2018-11-01", NaN ], [ "2018-11-02", NaN ], [ "2018-11-05", NaN ], [ "2018-11-06", NaN ], [ "2018-11-07", NaN ], [ "2018-11-08", NaN ], [ "2018-11-09", NaN ], [ "2018-11-12", NaN ], [ "2018-11-13", NaN ], [ "2018-11-14", NaN ], [ "2018-11-15", NaN ], [ "2018-11-16", NaN ], [ "2018-11-19", NaN ], [ "2018-11-20", NaN ], [ "2018-11-21", NaN ], [ "2018-11-22", NaN ], [ "2018-11-23", NaN ], [ "2018-11-26", NaN ], [ "2018-11-27", NaN ], [ "2018-11-28", NaN ], [ "2018-11-29", NaN ], [ "2018-11-30", NaN ], [ "2018-12-03", NaN ], [ "2018-12-04", NaN ], [ "2018-12-05", 0.12430157497173999 ], [ "2018-12-06", 0.12892409570763697 ], [ "2018-12-07", 0.12708790431031813 ], [ "2018-12-10", 0.11861695202683142 ], [ "2018-12-11", 0.11222384750812431 ], [ "2018-12-12", 0.10434065909593926 ], [ "2018-12-13", 0.0945821421451285 ], [ "2018-12-14", 0.07469063009369403 ], [ "2018-12-17", 0.05267089124890978 ], [ "2018-12-18", 0.030830117040045568 ], [ "2018-12-19", 0.00698529260814329 ], [ "2018-12-20", -0.009382991976488508 ], [ "2018-12-21", -0.01970705548893248 ], [ "2018-12-24", -0.02358252342046052 ], [ "2018-12-25", -0.0367204823591738 ], [ "2018-12-26", -0.047393008794243574 ], [ "2018-12-27", -0.05840546672719871 ], [ "2018-12-28", -0.06477242987436016 ], [ "2019-01-02", -0.06662948157228632 ], [ "2019-01-03", -0.0673251262749659 ], [ "2019-01-04", -0.06231658436082643 ], [ "2019-01-07", -0.0441210989937848 ], [ "2019-01-08", -0.032553455484065186 ], [ "2019-01-09", -0.024714948968084904 ], [ "2019-01-10", -0.01988745868954611 ], [ "2019-01-11", -0.007901391278274605 ], [ "2019-01-14", 0.008758933802103464 ], [ "2019-01-15", 0.023307519733430038 ], [ "2019-01-16", 0.033642650936225316 ], [ "2019-01-17", 0.04454746711008184 ], [ "2019-01-18", 0.056572067051307684 ], [ "2019-01-21", 0.06295519159726748 ], [ "2019-01-22", 0.06404789383017295 ], [ "2019-01-23", 0.07534220020831661 ], [ "2019-01-24", 0.09290506474722315 ], [ "2019-01-25", 0.10161779263671145 ], [ "2019-01-28", 0.11047684961409754 ], [ "2019-01-29", 0.12254047716487992 ], [ "2019-01-30", 0.12660696054894194 ], [ "2019-01-31", 0.12595697504586845 ], [ "2019-02-01", 0.1264054824147327 ], [ "2019-02-11", 0.15802291146538439 ], [ "2019-02-12", 0.18577989534876815 ], [ "2019-02-13", 0.2253526901822025 ], [ "2019-02-14", 0.2920794930838131 ], [ "2019-02-15", 0.38330898831346527 ], [ "2019-02-18", 0.49668470123341013 ], [ "2019-02-19", 0.6221308045042111 ], [ "2019-02-20", 0.7292793947647622 ], [ "2019-02-21", 0.8288484681054813 ], [ "2019-02-22", 0.8798630017131046 ], [ "2019-02-25", 0.9233659781667907 ], [ "2019-02-26", 0.9588926294833051 ], [ "2019-02-27", 0.9159702892955801 ], [ "2019-02-28", 0.8639260593559595 ], [ "2019-03-01", 0.8180916790972139 ], [ "2019-03-04", 0.8263058634631868 ], [ "2019-03-05", 0.8504473940808204 ], [ "2019-03-06", 0.8580745489056811 ], [ "2019-03-07", 0.8925622109604223 ], [ "2019-03-08", 0.9748239152943592 ], [ "2019-03-11", 1.099959735894517 ], [ "2019-03-12", 1.2357218775511134 ], [ "2019-03-13", 1.2857267249737907 ], [ "2019-03-14", 1.2544116997354458 ], [ "2019-03-15", 1.2163795665745143 ], [ "2019-03-18", 1.2189882421142455 ], [ "2019-03-19", 1.2861148313021928 ], [ "2019-03-20", 1.2857597107935792 ], [ "2019-03-21", 1.2867833661125445 ], [ "2019-03-22", 1.2250579294979165 ], [ "2019-03-25", 1.1292324970562806 ], [ "2019-03-26", 1.0652184688235877 ], [ "2019-03-27", 1.0093075524723485 ], [ "2019-03-28", 0.9731459222544565 ], [ "2019-03-29", 1.0150917000352582 ], [ "2019-04-01", 1.125731933908705 ], [ "2019-04-02", 1.2745727788647265 ], [ "2019-04-03", 1.3535270274329516 ], [ "2019-04-04", 1.503664663462951 ], [ "2019-04-08", 1.6767506784327466 ], [ "2019-04-09", 1.7350174915466 ], [ "2019-04-10", 1.7138303224301428 ], [ "2019-04-11", 1.6928565537784426 ], [ "2019-04-12", 1.7145681988088377 ], [ "2019-04-15", 1.6577944939316964 ], [ "2019-04-16", 1.5816578933136327 ], [ "2019-04-17", 1.5582271333614326 ], [ "2019-04-18", 1.4949896190585807 ], [ "2019-04-19", 1.4308008016525449 ], [ "2019-04-22", 1.4782790694779866 ], [ "2019-04-23", 1.4595423383500226 ], [ "2019-04-24", 1.4497680636674293 ] ], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "lineStyle": { "normal": { "width": 1, "opacity": 1, "curveness": 0, "type": "solid" } }, "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 556192, "xAxisIndex": 1, "yAxisIndex": 1 }, { "type": "line", "name": "dea", "symbol": "emptyCircle", "symbolSize": 4, "smooth": false, "step": false, "showSymbol": false, "data": [ [ "2018-10-19", NaN ], [ "2018-10-22", NaN ], [ "2018-10-23", NaN ], [ "2018-10-24", NaN ], [ "2018-10-25", NaN ], [ "2018-10-26", NaN ], [ "2018-10-29", NaN ], [ "2018-10-30", NaN ], [ "2018-10-31", NaN ], [ "2018-11-01", NaN ], [ "2018-11-02", NaN ], [ "2018-11-05", NaN ], [ "2018-11-06", NaN ], [ "2018-11-07", NaN ], [ "2018-11-08", NaN ], [ "2018-11-09", NaN ], [ "2018-11-12", NaN ], [ "2018-11-13", NaN ], [ "2018-11-14", NaN ], [ "2018-11-15", NaN ], [ "2018-11-16", NaN ], [ "2018-11-19", NaN ], [ "2018-11-20", NaN ], [ "2018-11-21", NaN ], [ "2018-11-22", NaN ], [ "2018-11-23", NaN ], [ "2018-11-26", NaN ], [ "2018-11-27", NaN ], [ "2018-11-28", NaN ], [ "2018-11-29", NaN ], [ "2018-11-30", NaN ], [ "2018-12-03", NaN ], [ "2018-12-04", NaN ], [ "2018-12-05", 0.11000530301286673 ], [ "2018-12-06", 0.11378906155182078 ], [ "2018-12-07", 0.11644883010352025 ], [ "2018-12-10", 0.11688245448818249 ], [ "2018-12-11", 0.11595073309217085 ], [ "2018-12-12", 0.11362871829292454 ], [ "2018-12-13", 0.10981940306336532 ], [ "2018-12-14", 0.10279364846943106 ], [ "2018-12-17", 0.0927690970253268 ], [ "2018-12-18", 0.08038130102827055 ], [ "2018-12-19", 0.0657020993442451 ], [ "2018-12-20", 0.05068508108009838 ], [ "2018-12-21", 0.036606653766292206 ], [ "2018-12-24", 0.024568818328941658 ], [ "2018-12-25", 0.012310958191318565 ], [ "2018-12-26", 0.00037016479420613584 ], [ "2018-12-27", -0.011384961510074834 ], [ "2018-12-28", -0.0220624551829319 ], [ "2019-01-02", -0.030975860460802786 ], [ "2019-01-03", -0.03824571362363541 ], [ "2019-01-04", -0.04305988777107361 ], [ "2019-01-07", -0.04327213001561585 ], [ "2019-01-08", -0.041128395109305715 ], [ "2019-01-09", -0.03784570588106155 ], [ "2019-01-10", -0.03425405644275846 ], [ "2019-01-11", -0.02898352340986169 ], [ "2019-01-14", -0.02143503196746866 ], [ "2019-01-15", -0.012486521627288921 ], [ "2019-01-16", -0.0032606871145860732 ], [ "2019-01-17", 0.00630094373034751 ], [ "2019-01-18", 0.016355168394539543 ], [ "2019-01-21", 0.025675173035085132 ], [ "2019-01-22", 0.03334971719410269 ], [ "2019-01-23", 0.041748213796945474 ], [ "2019-01-24", 0.05197958398700101 ], [ "2019-01-25", 0.0619072257169431 ], [ "2019-01-28", 0.07162115049637399 ], [ "2019-01-29", 0.08180501583007518 ], [ "2019-01-30", 0.09076540477384853 ], [ "2019-01-31", 0.09780371882825252 ], [ "2019-02-01", 0.10352407154554856 ], [ "2019-02-11", 0.11442383952951572 ], [ "2019-02-12", 0.1286950506933662 ], [ "2019-02-13", 0.14802657859113347 ], [ "2019-02-14", 0.17683716148966938 ], [ "2019-02-15", 0.21813152685442855 ], [ "2019-02-18", 0.27384216173022485 ], [ "2019-02-19", 0.3434998902850221 ], [ "2019-02-20", 0.42065579118097013 ], [ "2019-02-21", 0.5022943265658724 ], [ "2019-02-22", 0.5778080615953188 ], [ "2019-02-25", 0.6469196449096132 ], [ "2019-02-26", 0.7093142418243515 ], [ "2019-02-27", 0.7506454513185973 ], [ "2019-02-28", 0.7733015729260697 ], [ "2019-03-01", 0.7822595941602986 ], [ "2019-03-04", 0.7910688480208762 ], [ "2019-03-05", 0.8029445572328651 ], [ "2019-03-06", 0.8139705555674283 ], [ "2019-03-07", 0.829688886646027 ], [ "2019-03-08", 0.8587158923756935 ], [ "2019-03-11", 0.9069646610794582 ], [ "2019-03-12", 0.9727161043737892 ], [ "2019-03-13", 1.0353182284937894 ], [ "2019-03-14", 1.0791369227421206 ], [ "2019-03-15", 1.1065854515085993 ], [ "2019-03-18", 1.1290660096297285 ], [ "2019-03-19", 1.1604757739642213 ], [ "2019-03-20", 1.1855325613300929 ], [ "2019-03-21", 1.2057827222865831 ], [ "2019-03-22", 1.2096377637288498 ], [ "2019-03-25", 1.1935567103943359 ], [ "2019-03-26", 1.1678890620801863 ], [ "2019-03-27", 1.1361727601586187 ], [ "2019-03-28", 1.1035673925777862 ], [ "2019-03-29", 1.0858722540692807 ], [ "2019-04-01", 1.0938441900371656 ], [ "2019-04-02", 1.1299899078026778 ], [ "2019-04-03", 1.1746973317287326 ], [ "2019-04-04", 1.2404907980755762 ], [ "2019-04-08", 1.3277427741470103 ], [ "2019-04-09", 1.4091977176269281 ], [ "2019-04-10", 1.470124238587571 ], [ "2019-04-11", 1.5146707016257452 ], [ "2019-04-12", 1.5546502010623637 ], [ "2019-04-15", 1.5752790596362303 ], [ "2019-04-16", 1.5765548263717108 ], [ "2019-04-17", 1.5728892877696552 ], [ "2019-04-18", 1.5573093540274403 ], [ "2019-04-19", 1.5320076435524612 ], [ "2019-04-22", 1.5212619287375664 ], [ "2019-04-23", 1.5089180106600577 ], [ "2019-04-24", 1.497088021261532 ] ], "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "lineStyle": { "normal": { "width": 1, "opacity": 1, "curveness": 0, "type": "solid" } }, "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 556192, "xAxisIndex": 1, "yAxisIndex": 1 }, { "type": "bar", "name": "macd_z", "data": [ [ "2018-12-05T00:00:00", 0.014296271958873258 ], [ "2018-12-06T00:00:00", 0.015135034155816185 ], [ "2018-12-07T00:00:00", 0.010639074206797883 ], [ "2018-12-10T00:00:00", 0.0017344975386489325 ], [ "2019-01-08T00:00:00", 0.00857493962524053 ], [ "2019-01-09T00:00:00", 0.013130756912976646 ], [ "2019-01-10T00:00:00", 0.014366597753212348 ], [ "2019-01-11T00:00:00", 0.021082132131587085 ], [ "2019-01-14T00:00:00", 0.030193965769572124 ], [ "2019-01-15T00:00:00", 0.03579404136071896 ], [ "2019-01-16T00:00:00", 0.03690333805081139 ], [ "2019-01-17T00:00:00", 0.03824652337973433 ], [ "2019-01-18T00:00:00", 0.04021689865676814 ], [ "2019-01-21T00:00:00", 0.03728001856218235 ], [ "2019-01-22T00:00:00", 0.03069817663607026 ], [ "2019-01-23T00:00:00", 0.03359398641137114 ], [ "2019-01-24T00:00:00", 0.04092548076022214 ], [ "2019-01-25T00:00:00", 0.03971056691976835 ], [ "2019-01-28T00:00:00", 0.03885569911772355 ], [ "2019-01-29T00:00:00", 0.04073546133480474 ], [ "2019-01-30T00:00:00", 0.0358415557750934 ], [ "2019-01-31T00:00:00", 0.028153256217615927 ], [ "2019-02-01T00:00:00", 0.022881410869184146 ], [ "2019-02-11T00:00:00", 0.043599071935868663 ], [ "2019-02-12T00:00:00", 0.05708484465540195 ], [ "2019-02-13T00:00:00", 0.07732611159106903 ], [ "2019-02-14T00:00:00", 0.11524233159414371 ], [ "2019-02-15T00:00:00", 0.16517746145903672 ], [ "2019-02-18T00:00:00", 0.22284253950318528 ], [ "2019-02-19T00:00:00", 0.278630914219189 ], [ "2019-02-20T00:00:00", 0.3086236035837921 ], [ "2019-02-21T00:00:00", 0.32655414153960893 ], [ "2019-02-22T00:00:00", 0.3020549401177858 ], [ "2019-02-25T00:00:00", 0.2764463332571775 ], [ "2019-02-26T00:00:00", 0.24957838765895357 ], [ "2019-02-27T00:00:00", 0.16532483797698283 ], [ "2019-02-28T00:00:00", 0.09062448642988974 ], [ "2019-03-01T00:00:00", 0.035832084936915365 ], [ "2019-03-04T00:00:00", 0.035237015442310615 ], [ "2019-03-05T00:00:00", 0.04750283684795531 ], [ "2019-03-06T00:00:00", 0.04410399333825288 ], [ "2019-03-07T00:00:00", 0.0628733243143953 ], [ "2019-03-08T00:00:00", 0.11610802291866573 ], [ "2019-03-11T00:00:00", 0.19299507481505884 ], [ "2019-03-12T00:00:00", 0.2630057731773242 ], [ "2019-03-13T00:00:00", 0.2504084964800013 ], [ "2019-03-14T00:00:00", 0.17527477699332517 ], [ "2019-03-15T00:00:00", 0.10979411506591497 ], [ "2019-03-18T00:00:00", 0.08992223248451703 ], [ "2019-03-19T00:00:00", 0.12563905733797154 ], [ "2019-03-20T00:00:00", 0.10022714946348632 ], [ "2019-03-21T00:00:00", 0.0810006438259614 ], [ "2019-03-22T00:00:00", 0.015420165769066685 ], [ "2019-04-01T00:00:00", 0.031887743871539476 ], [ "2019-04-02T00:00:00", 0.1445828710620487 ], [ "2019-04-03T00:00:00", 0.17882969570421903 ], [ "2019-04-04T00:00:00", 0.26317386538737475 ], [ "2019-04-08T00:00:00", 0.34900790428573636 ], [ "2019-04-09T00:00:00", 0.32581977391967176 ], [ "2019-04-10T00:00:00", 0.24370608384257175 ], [ "2019-04-11T00:00:00", 0.17818585215269733 ], [ "2019-04-12T00:00:00", 0.15991799774647397 ], [ "2019-04-15T00:00:00", 0.08251543429546615 ], [ "2019-04-16T00:00:00", 0.005103066941921863 ] ], "barCategoryGap": "20%", "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 556192, "xAxisIndex": 1, "yAxisIndex": 1 }, { "type": "bar", "name": "macd_f", "data": [ [ "2018-12-11T00:00:00", -0.0037268855840465465 ], [ "2018-12-12T00:00:00", -0.009288059196985277 ], [ "2018-12-13T00:00:00", -0.015237260918236822 ], [ "2018-12-14T00:00:00", -0.028103018375737032 ], [ "2018-12-17T00:00:00", -0.040098205776417026 ], [ "2018-12-18T00:00:00", -0.04955118398822499 ], [ "2018-12-19T00:00:00", -0.058716806736101815 ], [ "2018-12-20T00:00:00", -0.06006807305658689 ], [ "2018-12-21T00:00:00", -0.056313709255224685 ], [ "2018-12-24T00:00:00", -0.04815134174940218 ], [ "2018-12-25T00:00:00", -0.04903144055049237 ], [ "2018-12-26T00:00:00", -0.04776317358844971 ], [ "2018-12-27T00:00:00", -0.04702050521712387 ], [ "2018-12-28T00:00:00", -0.04270997469142826 ], [ "2019-01-02T00:00:00", -0.035653621111483534 ], [ "2019-01-03T00:00:00", -0.02907941265133049 ], [ "2019-01-04T00:00:00", -0.01925669658975282 ], [ "2019-01-07T00:00:00", -0.0008489689781689541 ], [ "2019-03-25T00:00:00", -0.06432421333805527 ], [ "2019-03-26T00:00:00", -0.10267059325659855 ], [ "2019-03-27T00:00:00", -0.1268652076862702 ], [ "2019-03-28T00:00:00", -0.13042147032332974 ], [ "2019-03-29T00:00:00", -0.0707805540340225 ], [ "2019-04-17T00:00:00", -0.014662154408222605 ], [ "2019-04-18T00:00:00", -0.062319734968859564 ], [ "2019-04-19T00:00:00", -0.10120684189991636 ], [ "2019-04-22T00:00:00", -0.042982859259579786 ], [ "2019-04-23T00:00:00", -0.049375672310035146 ], [ "2019-04-24T00:00:00", -0.04731995759410279 ] ], "barCategoryGap": "20%", "label": { "normal": { "show": false, "position": "top", "textStyle": { "fontSize": 12 } }, "emphasis": { "show": true, "textStyle": { "fontSize": 12 } } }, "markPoint": { "data": [] }, "markLine": { "data": [] }, "seriesId": 556192, "xAxisIndex": 1, "yAxisIndex": 1 } ], "legend": [ { "data": [ "K" ], "selectedMode": "multiple", "show": true, "left": "center", "top": "top", "orient": "horizontal", "textStyle": { "fontSize": 12 } }, { "data": [ "dif", "dea", "macd_z", "macd_f" ], "selectedMode": "multiple", "show": false, "left": "center", "top": "top", "orient": "horizontal", "textStyle": { "fontSize": 12 } } ], "animation": true, "xAxis": [ { "show": true, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "type": "category", "splitLine": { "show": false }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } }, "data": [ "2018-10-19", "2018-10-22", "2018-10-23", "2018-10-24", "2018-10-25", "2018-10-26", "2018-10-29", "2018-10-30", "2018-10-31", "2018-11-01", "2018-11-02", "2018-11-05", "2018-11-06", "2018-11-07", "2018-11-08", "2018-11-09", "2018-11-12", "2018-11-13", "2018-11-14", "2018-11-15", "2018-11-16", "2018-11-19", "2018-11-20", "2018-11-21", "2018-11-22", "2018-11-23", "2018-11-26", "2018-11-27", "2018-11-28", "2018-11-29", "2018-11-30", "2018-12-03", "2018-12-04", "2018-12-05", "2018-12-06", "2018-12-07", "2018-12-10", "2018-12-11", "2018-12-12", "2018-12-13", "2018-12-14", "2018-12-17", "2018-12-18", "2018-12-19", "2018-12-20", "2018-12-21", "2018-12-24", "2018-12-25", "2018-12-26", "2018-12-27", "2018-12-28", "2019-01-02", "2019-01-03", "2019-01-04", "2019-01-07", "2019-01-08", "2019-01-09", "2019-01-10", "2019-01-11", "2019-01-14", "2019-01-15", "2019-01-16", "2019-01-17", "2019-01-18", "2019-01-21", "2019-01-22", "2019-01-23", "2019-01-24", "2019-01-25", "2019-01-28", "2019-01-29", "2019-01-30", "2019-01-31", "2019-02-01", "2019-02-11", "2019-02-12", "2019-02-13", "2019-02-14", "2019-02-15", "2019-02-18", "2019-02-19", "2019-02-20", "2019-02-21", "2019-02-22", "2019-02-25", "2019-02-26", "2019-02-27", "2019-02-28", "2019-03-01", "2019-03-04", "2019-03-05", "2019-03-06", "2019-03-07", "2019-03-08", "2019-03-11", "2019-03-12", "2019-03-13", "2019-03-14", "2019-03-15", "2019-03-18", "2019-03-19", "2019-03-20", "2019-03-21", "2019-03-22", "2019-03-25", "2019-03-26", "2019-03-27", "2019-03-28", "2019-03-29", "2019-04-01", "2019-04-02", "2019-04-03", "2019-04-04", "2019-04-08", "2019-04-09", "2019-04-10", "2019-04-11", "2019-04-12", "2019-04-15", "2019-04-16", "2019-04-17", "2019-04-18", "2019-04-19", "2019-04-22", "2019-04-23", "2019-04-24" ], "scale": true }, { "show": false, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "type": "category", "splitLine": { "show": false }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } }, "data": [ "2018-10-19", "2018-10-22", "2018-10-23", "2018-10-24", "2018-10-25", "2018-10-26", "2018-10-29", "2018-10-30", "2018-10-31", "2018-11-01", "2018-11-02", "2018-11-05", "2018-11-06", "2018-11-07", "2018-11-08", "2018-11-09", "2018-11-12", "2018-11-13", "2018-11-14", "2018-11-15", "2018-11-16", "2018-11-19", "2018-11-20", "2018-11-21", "2018-11-22", "2018-11-23", "2018-11-26", "2018-11-27", "2018-11-28", "2018-11-29", "2018-11-30", "2018-12-03", "2018-12-04", "2018-12-05", "2018-12-06", "2018-12-07", "2018-12-10", "2018-12-11", "2018-12-12", "2018-12-13", "2018-12-14", "2018-12-17", "2018-12-18", "2018-12-19", "2018-12-20", "2018-12-21", "2018-12-24", "2018-12-25", "2018-12-26", "2018-12-27", "2018-12-28", "2019-01-02", "2019-01-03", "2019-01-04", "2019-01-07", "2019-01-08", "2019-01-09", "2019-01-10", "2019-01-11", "2019-01-14", "2019-01-15", "2019-01-16", "2019-01-17", "2019-01-18", "2019-01-21", "2019-01-22", "2019-01-23", "2019-01-24", "2019-01-25", "2019-01-28", "2019-01-29", "2019-01-30", "2019-01-31", "2019-02-01", "2019-02-11", "2019-02-12", "2019-02-13", "2019-02-14", "2019-02-15", "2019-02-18", "2019-02-19", "2019-02-20", "2019-02-21", "2019-02-22", "2019-02-25", "2019-02-26", "2019-02-27", "2019-02-28", "2019-03-01", "2019-03-04", "2019-03-05", "2019-03-06", "2019-03-07", "2019-03-08", "2019-03-11", "2019-03-12", "2019-03-13", "2019-03-14", "2019-03-15", "2019-03-18", "2019-03-19", "2019-03-20", "2019-03-21", "2019-03-22", "2019-03-25", "2019-03-26", "2019-03-27", "2019-03-28", "2019-03-29", "2019-04-01", "2019-04-02", "2019-04-03", "2019-04-04", "2019-04-08", "2019-04-09", "2019-04-10", "2019-04-11", "2019-04-12", "2019-04-15", "2019-04-16", "2019-04-17", "2019-04-18", "2019-04-19", "2019-04-22", "2019-04-23", "2019-04-24" ], "gridIndex": 4 } ], "yAxis": [ { "show": true, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "type": "value", "splitLine": { "show": true }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "formatter": "{value} ", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } }, "scale": true, "splitArea": { "show": true } }, { "show": true, "nameLocation": "middle", "nameGap": 25, "nameTextStyle": { "fontSize": 14 }, "axisTick": { "alignWithLabel": false }, "inverse": false, "boundaryGap": true, "type": "value", "splitLine": { "show": true }, "axisLine": { "lineStyle": { "width": 1 } }, "axisLabel": { "interval": "auto", "formatter": "{value} ", "rotate": 0, "margin": 8, "textStyle": { "fontSize": 12 } }, "gridIndex": 4 } ], "color": [ "#145b7d", "#e0861a", "#ef232a", "#14b143" ], "dataZoom": [ { "show": true, "type": "slider", "start": 50, "end": 100, "orient": "horizontal", "xAxisIndex": [ 0, 1 ] } ], "grid": [ { "top": 0, "bottom": 220 }, { "top": 400 }, { "top": 400 }, { "top": 400 }, { "top": 400 } ] }; myChart_acbb49e2120f45798d5d0925ed5f0e20.setOption(option_acbb49e2120f45798d5d0925ed5f0e20); });

全部回复

0/140

量化课程

    移动端课程