IC 代表了预测值和实现值之间的相关性, 通常用以评价预测能力。 取值在-1到1之间, 绝对值越大, 表示预测能力越好。
请问:IC一般为多少就可以说因子好?大家一般算的IC是多少?
# 第一分位数的因子值最小, 第五分位数的因子值最大。
# IC 代表了预测值和实现值之间的相关性, 通常用以评价预测能力。 取值在-1到1之间, 绝对值越大, 表示预测能力越好。
#导入需要的数据库
import pandas as pd
import numpy as np
import jqfactor
#获取因子值,人气指标 AR
factor_data = jqfactor.get_factor_values(securities=get_index_stocks('000300.XSHG'), factors=['AR'],
start_date='2018-01-01', end_date='2018-06-01')['AR']
factor_data.tail()
000001.XSHE | 000002.XSHE | 000063.XSHE | 000069.XSHE | 000100.XSHE | 000157.XSHE | 000166.XSHE | 000333.XSHE | 000338.XSHE | 000402.XSHE | ... | 603156.XSHG | 603160.XSHG | 603259.XSHG | 603260.XSHG | 603288.XSHG | 603799.XSHG | 603833.XSHG | 603858.XSHG | 603986.XSHG | 603993.XSHG | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018-05-28 | 58.268607 | 58.065768 | NaN | 97.532674 | 79.116466 | 101.818182 | 94.736842 | 94.866644 | 88.156883 | 90.923521 | ... | 123.916599 | 144.339344 | NaN | 154.095176 | 168.508966 | 118.879634 | 152.718918 | 178.920118 | 103.665834 | 106.386861 |
2018-05-29 | 53.583907 | 54.172044 | NaN | 91.765782 | 76.954733 | 96.491228 | 87.857143 | 87.864186 | 89.953870 | 100.015411 | ... | 133.697895 | 151.917033 | NaN | 154.437680 | 186.666667 | 115.240252 | 133.765621 | 146.149218 | 96.871487 | 103.184713 |
2018-05-30 | 52.793372 | 50.331210 | NaN | 101.853858 | 81.896552 | 93.244653 | 87.412587 | 89.810888 | 96.141392 | 103.015873 | ... | 161.622857 | 114.779602 | 35.845472 | 173.471539 | 184.560976 | 103.286312 | 141.276698 | 143.680188 | 88.635935 | 85.416667 |
2018-05-31 | 46.630521 | 53.546811 | NaN | 104.229064 | 86.206897 | 100.051308 | 99.253731 | 99.762018 | 112.195820 | 109.870044 | ... | 172.804469 | 116.610169 | 57.595993 | 176.256192 | 187.121951 | 98.341953 | 141.716329 | 159.222702 | 92.438549 | 88.254756 |
2018-06-01 | 42.239868 | 52.077854 | NaN | 95.878871 | 77.872340 | 96.872710 | 99.275362 | 91.388279 | 106.007368 | 105.135266 | ... | 154.842690 | 102.605339 | 88.228393 | 145.009074 | 181.777933 | 93.620245 | 116.351805 | 144.857143 | 87.643634 | 81.899351 |
5 rows × 300 columns
#使用获取的因子值进行单因子分析
far = jqfactor.analyze_factor(factor=factor_data, start_date='2018-01-01', end_date='2018-06-01',
weight_method='mktcap', industry='jq_l1',
quantiles=5, periods=(1,5,22),max_loss=0.2)
# 去除 nan/inf,整理后的因子值、forward_return 和分位数
far.clean_factor_data.head()
period_1 | period_5 | period_22 | factor | group | factor_quantile | weight | ||
---|---|---|---|---|---|---|---|---|
date | asset | |||||||
2018-01-02 | 000001.XSHE | -0.027010 | -0.045253 | 0.024090 | 96.729027 | 金融指数 | 2 | 0.000067 |
000002.XSHE | -0.007064 | 0.100737 | 0.151721 | 155.987377 | 房地产指数 | 5 | 0.000100 | |
000063.XSHE | 0.026865 | 0.017350 | -0.216056 | 94.053043 | 信息技术指数 | 2 | 0.000040 | |
000069.XSHE | 0.005627 | 0.067407 | 0.131450 | 131.010592 | 可选消费指数 | 4 | 0.000021 | |
000100.XSHE | 0.020997 | 0.030621 | -0.130359 | 93.563218 | 可选消费指数 | 2 | 0.000015 |
# 信息比率
far.ic.tail()
period_1 | period_5 | period_22 | |
---|---|---|---|
date | |||
2018-05-28 | -0.161237 | -0.032813 | 0.085490 |
2018-05-29 | 0.207990 | 0.161555 | 0.207288 |
2018-05-30 | 0.328195 | 0.147335 | 0.214697 |
2018-05-31 | -0.422589 | -0.167478 | 0.039210 |
2018-06-01 | 0.003620 | 0.144754 | 0.114503 |
# 分行业信息比率
far.ic_by_group.tail()
period_1 | period_5 | period_22 | |
---|---|---|---|
group | |||
日常消费指数 | -0.022225 | -0.012118 | -0.026843 |
材料指数 | -0.022160 | -0.033475 | -0.102178 |
电信服务指数 | NaN | NaN | NaN |
能源指数 | -0.061081 | -0.125773 | -0.211658 |
金融指数 | 0.002846 | -0.049626 | -0.079116 |
# 换手率
far.quantile_turnover
{'period_1': 1 2 3 4 5 date 2018-01-02 NaN NaN NaN NaN NaN 2018-01-03 0.172414 0.344828 0.368421 0.344828 0.172414 2018-01-04 0.120690 0.293103 0.385965 0.344828 0.137931 2018-01-05 0.155172 0.310345 0.456140 0.448276 0.172414 2018-01-08 0.241379 0.482759 0.517241 0.362069 0.120690 2018-01-09 0.172414 0.379310 0.344828 0.293103 0.155172 2018-01-10 0.206897 0.448276 0.473684 0.396552 0.137931 2018-01-11 0.155172 0.448276 0.508772 0.396552 0.189655 2018-01-12 0.137931 0.293103 0.350877 0.258621 0.103448 2018-01-15 0.172414 0.362069 0.491228 0.482759 0.224138 2018-01-16 0.086207 0.258621 0.333333 0.224138 0.068966 2018-01-17 0.137931 0.379310 0.526316 0.482759 0.224138 2018-01-18 0.086207 0.275862 0.350877 0.293103 0.120690 2018-01-19 0.086207 0.241379 0.333333 0.241379 0.086207 2018-01-22 0.137931 0.280702 0.310345 0.210526 0.086207 2018-01-23 0.086207 0.210526 0.206897 0.140351 0.051724 2018-01-24 0.137931 0.310345 0.280702 0.258621 0.120690 2018-01-25 0.086207 0.275862 0.333333 0.241379 0.103448 2018-01-26 0.103448 0.241379 0.245614 0.155172 0.051724 2018-01-29 0.120690 0.293103 0.280702 0.206897 0.103448 2018-01-30 0.155172 0.241379 0.175439 0.137931 0.051724 2018-01-31 0.086207 0.258621 0.362069 0.258621 0.086207 2018-02-01 0.120690 0.362069 0.362069 0.275862 0.155172 2018-02-02 0.137931 0.310345 0.293103 0.241379 0.120690 2018-02-05 0.155172 0.275862 0.275862 0.310345 0.155172 2018-02-06 0.120690 0.275862 0.275862 0.224138 0.086207 2018-02-07 0.118644 0.258621 0.241379 0.241379 0.155172 2018-02-08 0.120690 0.258621 0.327586 0.344828 0.206897 2018-02-09 0.086207 0.293103 0.396552 0.362069 0.189655 2018-02-12 0.086207 0.310345 0.396552 0.275862 0.086207 ... ... ... ... ... ... 2018-04-19 0.135593 0.275862 0.344828 0.310345 0.103448 2018-04-20 0.152542 0.310345 0.310345 0.258621 0.103448 2018-04-23 0.101695 0.310345 0.362069 0.258621 0.137931 2018-04-24 0.118644 0.258621 0.258621 0.224138 0.120690 2018-04-25 0.172414 0.344828 0.293103 0.275862 0.137931 2018-04-26 0.118644 0.275862 0.327586 0.293103 0.137931 2018-04-27 0.118644 0.293103 0.344828 0.293103 0.120690 2018-05-02 0.152542 0.310345 0.379310 0.362069 0.152542 2018-05-03 0.084746 0.206897 0.310345 0.293103 0.101695 2018-05-04 0.166667 0.315789 0.379310 0.379310 0.169492 2018-05-07 0.203390 0.465517 0.431034 0.310345 0.118644 2018-05-08 0.152542 0.327586 0.379310 0.310345 0.118644 2018-05-09 0.220339 0.396552 0.327586 0.310345 0.118644 2018-05-10 0.118644 0.275862 0.413793 0.431034 0.169492 2018-05-11 0.152542 0.362069 0.396552 0.327586 0.135593 2018-05-14 0.152542 0.344828 0.413793 0.396552 0.169492 2018-05-15 0.152542 0.327586 0.379310 0.396552 0.186441 2018-05-16 0.152542 0.396552 0.413793 0.362069 0.186441 2018-05-17 0.084746 0.241379 0.310345 0.327586 0.169492 2018-05-18 0.203390 0.379310 0.379310 0.396552 0.203390 2018-05-21 0.186441 0.310345 0.372881 0.396552 0.152542 2018-05-22 0.101695 0.258621 0.271186 0.327586 0.186441 2018-05-23 0.101695 0.275862 0.372881 0.396552 0.169492 2018-05-24 0.101695 0.275862 0.362069 0.344828 0.152542 2018-05-25 0.135593 0.293103 0.396552 0.413793 0.186441 2018-05-28 0.186441 0.413793 0.344828 0.379310 0.220339 2018-05-29 0.186441 0.396552 0.379310 0.362069 0.186441 2018-05-30 0.118644 0.258621 0.305085 0.275862 0.118644 2018-05-31 0.169492 0.379310 0.372881 0.206897 0.084746 2018-06-01 0.203390 0.275862 0.271186 0.310345 0.135593 [100 rows x 5 columns], 'period_22': 1 2 3 4 5 date 2018-01-02 NaN NaN NaN NaN NaN 2018-01-03 NaN NaN NaN NaN NaN 2018-01-04 NaN NaN NaN NaN NaN 2018-01-05 NaN NaN NaN NaN NaN 2018-01-08 NaN NaN NaN NaN NaN 2018-01-09 NaN NaN NaN NaN NaN 2018-01-10 NaN NaN NaN NaN NaN 2018-01-11 NaN NaN NaN NaN NaN 2018-01-12 NaN NaN NaN NaN NaN 2018-01-15 NaN NaN NaN NaN NaN 2018-01-16 NaN NaN NaN NaN NaN 2018-01-17 NaN NaN NaN NaN NaN 2018-01-18 NaN NaN NaN NaN NaN 2018-01-19 NaN NaN NaN NaN NaN 2018-01-22 NaN NaN NaN NaN NaN 2018-01-23 NaN NaN NaN NaN NaN 2018-01-24 NaN NaN NaN NaN NaN 2018-01-25 NaN NaN NaN NaN NaN 2018-01-26 NaN NaN NaN NaN NaN 2018-01-29 NaN NaN NaN NaN NaN 2018-01-30 NaN NaN NaN NaN NaN 2018-01-31 NaN NaN NaN NaN NaN 2018-02-01 0.810345 0.810345 0.793103 0.810345 0.758621 2018-02-02 0.844828 0.758621 0.810345 0.827586 0.741379 2018-02-05 0.827586 0.741379 0.844828 0.810345 0.706897 2018-02-06 0.793103 0.810345 0.862069 0.879310 0.724138 2018-02-07 0.711864 0.741379 0.810345 0.844828 0.775862 2018-02-08 0.706897 0.827586 0.896552 0.879310 0.775862 2018-02-09 0.672414 0.724138 0.827586 0.913793 0.741379 2018-02-12 0.741379 0.810345 0.844828 0.844828 0.706897 ... ... ... ... ... ... 2018-04-19 0.711864 0.758621 0.879310 0.775862 0.637931 2018-04-20 0.677966 0.775862 0.827586 0.741379 0.637931 2018-04-23 0.745763 0.758621 0.810345 0.672414 0.603448 2018-04-24 0.728814 0.724138 0.896552 0.741379 0.620690 2018-04-25 0.655172 0.689655 0.844828 0.689655 0.620690 2018-04-26 0.711864 0.741379 0.827586 0.706897 0.603448 2018-04-27 0.694915 0.706897 0.724138 0.793103 0.620690 2018-05-02 0.644068 0.706897 0.724138 0.741379 0.559322 2018-05-03 0.711864 0.724138 0.844828 0.827586 0.593220 2018-05-04 0.766667 0.684211 0.896552 0.827586 0.661017 2018-05-07 0.762712 0.655172 0.862069 0.844828 0.677966 2018-05-08 0.847458 0.758621 0.879310 0.844828 0.661017 2018-05-09 0.813559 0.724138 0.879310 0.741379 0.627119 2018-05-10 0.779661 0.741379 0.913793 0.793103 0.610169 2018-05-11 0.762712 0.758621 0.862069 0.793103 0.661017 2018-05-14 0.728814 0.758621 0.862069 0.741379 0.694915 2018-05-15 0.694915 0.741379 0.758621 0.775862 0.661017 2018-05-16 0.728814 0.758621 0.810345 0.758621 0.661017 2018-05-17 0.728814 0.775862 0.758621 0.741379 0.694915 2018-05-18 0.694915 0.758621 0.758621 0.810345 0.694915 2018-05-21 0.711864 0.793103 0.813559 0.793103 0.711864 2018-05-22 0.677966 0.775862 0.830508 0.810345 0.762712 2018-05-23 0.728814 0.793103 0.779661 0.844828 0.779661 2018-05-24 0.711864 0.862069 0.810345 0.827586 0.745763 2018-05-25 0.711864 0.758621 0.741379 0.775862 0.779661 2018-05-28 0.830508 0.810345 0.775862 0.793103 0.813559 2018-05-29 0.762712 0.810345 0.758621 0.827586 0.847458 2018-05-30 0.762712 0.724138 0.813559 0.810345 0.830508 2018-05-31 0.830508 0.844828 0.881356 0.810345 0.762712 2018-06-01 0.694915 0.827586 0.813559 0.844828 0.728814 [100 rows x 5 columns], 'period_5': 1 2 3 4 5 date 2018-01-02 NaN NaN NaN NaN NaN 2018-01-03 NaN NaN NaN NaN NaN 2018-01-04 NaN NaN NaN NaN NaN 2018-01-05 NaN NaN NaN NaN NaN 2018-01-08 NaN NaN NaN NaN NaN 2018-01-09 0.310345 0.551724 0.586207 0.517241 0.293103 2018-01-10 0.379310 0.689655 0.649123 0.568966 0.362069 2018-01-11 0.293103 0.517241 0.526316 0.568966 0.327586 2018-01-12 0.310345 0.568966 0.578947 0.586207 0.293103 2018-01-15 0.310345 0.603448 0.614035 0.586207 0.362069 2018-01-16 0.327586 0.620690 0.631579 0.603448 0.327586 2018-01-17 0.327586 0.568966 0.631579 0.551724 0.379310 2018-01-18 0.500000 0.655172 0.666667 0.689655 0.413793 2018-01-19 0.465517 0.655172 0.754386 0.724138 0.431034 2018-01-22 0.431034 0.684211 0.724138 0.701754 0.379310 2018-01-23 0.327586 0.578947 0.775862 0.684211 0.362069 2018-01-24 0.258621 0.517241 0.736842 0.586207 0.275862 2018-01-25 0.258621 0.603448 0.649123 0.482759 0.258621 2018-01-26 0.258621 0.534483 0.578947 0.465517 0.224138 2018-01-29 0.327586 0.551724 0.561404 0.482759 0.206897 2018-01-30 0.275862 0.620690 0.596491 0.551724 0.224138 2018-01-31 0.293103 0.568966 0.603448 0.431034 0.172414 2018-02-01 0.224138 0.586207 0.637931 0.431034 0.189655 2018-02-02 0.275862 0.568966 0.620690 0.500000 0.275862 2018-02-05 0.327586 0.500000 0.637931 0.551724 0.275862 2018-02-06 0.293103 0.534483 0.689655 0.568966 0.327586 2018-02-07 0.271186 0.551724 0.620690 0.586207 0.379310 2018-02-08 0.310345 0.448276 0.568966 0.586207 0.293103 2018-02-09 0.258621 0.465517 0.517241 0.517241 0.275862 2018-02-12 0.275862 0.586207 0.603448 0.620690 0.362069 ... ... ... ... ... ... 2018-04-19 0.322034 0.431034 0.517241 0.465517 0.224138 2018-04-20 0.305085 0.500000 0.500000 0.482759 0.241379 2018-04-23 0.372881 0.689655 0.637931 0.534483 0.258621 2018-04-24 0.322034 0.568966 0.586207 0.517241 0.224138 2018-04-25 0.224138 0.517241 0.551724 0.517241 0.258621 2018-04-26 0.237288 0.586207 0.620690 0.603448 0.310345 2018-04-27 0.254237 0.551724 0.586207 0.534483 0.293103 2018-05-02 0.220339 0.431034 0.500000 0.551724 0.271186 2018-05-03 0.288136 0.465517 0.534483 0.534483 0.288136 2018-05-04 0.350000 0.561404 0.620690 0.500000 0.305085 2018-05-07 0.355932 0.637931 0.689655 0.551724 0.355932 2018-05-08 0.372881 0.655172 0.758621 0.603448 0.305085 2018-05-09 0.406780 0.637931 0.706897 0.689655 0.338983 2018-05-10 0.355932 0.637931 0.672414 0.637931 0.338983 2018-05-11 0.338983 0.655172 0.706897 0.672414 0.389831 2018-05-14 0.355932 0.655172 0.741379 0.603448 0.355932 2018-05-15 0.338983 0.603448 0.724138 0.586207 0.355932 2018-05-16 0.355932 0.586207 0.603448 0.586207 0.406780 2018-05-17 0.338983 0.603448 0.689655 0.586207 0.305085 2018-05-18 0.338983 0.672414 0.689655 0.689655 0.305085 2018-05-21 0.406780 0.655172 0.728814 0.724138 0.338983 2018-05-22 0.322034 0.568966 0.694915 0.603448 0.305085 2018-05-23 0.254237 0.482759 0.644068 0.655172 0.355932 2018-05-24 0.305085 0.603448 0.620690 0.568966 0.322034 2018-05-25 0.322034 0.603448 0.551724 0.603448 0.355932 2018-05-28 0.372881 0.655172 0.620690 0.655172 0.457627 2018-05-29 0.355932 0.672414 0.655172 0.672414 0.389831 2018-05-30 0.338983 0.603448 0.661017 0.620690 0.423729 2018-05-31 0.440678 0.620690 0.627119 0.620690 0.389831 2018-06-01 0.406780 0.620690 0.525424 0.586207 0.355932 [100 rows x 5 columns]}
# 计算按分位数分组加权因子收益和标准差
mean, std = far.calc_mean_return_by_quantile(by_date=False, by_group=False, demeaned=False, group_adjust=False)
# 按分位数分组加权因子收益和标准差
std
period_1 | period_5 | period_22 | |
---|---|---|---|
factor_quantile | |||
1 | 0.000242 | 0.000527 | 0.000977 |
2 | 0.000249 | 0.000566 | 0.001003 |
3 | 0.000269 | 0.000610 | 0.001142 |
4 | 0.000293 | 0.000687 | 0.001322 |
5 | 0.000352 | 0.000845 | 0.001231 |
# 计算因子的 alpha 和 beta
far.calc_factor_alpha_beta(demeaned=True, group_adjust=False)
period_1 | period_5 | period_22 | |
---|---|---|---|
Ann. alpha | -0.063672 | 0.000702 | -0.151840 |
beta | 0.118797 | 0.105225 | -0.218097 |
# 计算每日因子信息比率(IC值)
far.calc_factor_information_coefficient(group_adjust=False, by_group=False, method='rank').tail()
period_1 | period_5 | period_22 | |
---|---|---|---|
date | |||
2018-05-28 | -0.161237 | -0.032813 | 0.085490 |
2018-05-29 | 0.207990 | 0.161555 | 0.207288 |
2018-05-30 | 0.328195 | 0.147335 | 0.214697 |
2018-05-31 | -0.422589 | -0.167478 | 0.039210 |
2018-06-01 | 0.003620 | 0.144754 | 0.114503 |
# 打印因子收益表
far.plot_returns_table(demeaned=False, group_adjust=False)
收益分析
period_1 | period_5 | period_22 | |
---|---|---|---|
Ann. alpha | 0.015 | 0.051 | -0.036 |
beta | 1.075 | 1.096 | 0.922 |
Mean Period Wise Return Top Quantile (bps) | -4.312 | -10.159 | -26.112 |
Mean Period Wise Return Bottom Quantile (bps) | -9.562 | -6.599 | -8.540 |
Mean Period Wise Spread (bps) | 1.466 | -3.194 | -10.786 |
# 打印换手率表
far.plot_turnover_table()
换手率分析
period_1 | period_22 | period_5 | |
---|---|---|---|
Quantile 1 Mean Turnover | 0.140 | 0.746 | 0.332 |
Quantile 2 Mean Turnover | 0.319 | 0.784 | 0.596 |
Quantile 3 Mean Turnover | 0.354 | 0.814 | 0.637 |
Quantile 4 Mean Turnover | 0.313 | 0.795 | 0.594 |
Quantile 5 Mean Turnover | 0.139 | 0.730 | 0.324 |
period_1 | period_5 | period_22 | |
---|---|---|---|
Mean Factor Rank Autocorrelation | 0.965 | 0.823 | 0.15 |
# 打印信息比率(IC)相关表
far.plot_information_table(group_adjust=False, method='rank')
IC 分析
period_1 | period_5 | period_22 | |
---|---|---|---|
IC Mean | -0.009 | -0.013 | -0.084 |
IC Std. | 0.211 | 0.190 | 0.201 |
Risk-Adjusted IC | -0.044 | -0.069 | -0.416 |
t-stat(IC) | -0.440 | -0.693 | -4.156 |
p-value(IC) | 0.661 | 0.490 | 0.000 |
IC Skew | 0.020 | -0.704 | -1.058 |
IC Kurtosis | -0.127 | 0.654 | 0.367 |
# 打印个分位数统计表
far.plot_quantile_statistics_table()
分位数统计
min | max | mean | std | count | count % | |
---|---|---|---|---|---|---|
factor_quantile | ||||||
1 | 0.000000 | 97.107614 | 69.203011 | 10.838712 | 5841 | 20.119179 |
2 | 67.355082 | 119.153058 | 90.173125 | 9.049117 | 5794 | 19.957289 |
3 | 85.153872 | 144.742528 | 107.740956 | 12.184891 | 5779 | 19.905621 |
4 | 100.366300 | 195.807050 | 129.107820 | 17.908045 | 5795 | 19.960733 |
5 | 116.948403 | 383950.000000 | 250.004126 | 5053.798296 | 5823 | 20.057178 |
# 画信息比率(IC)时间序列图
far.plot_ic_ts(group_adjust=False, method='rank')
<Figure size 432x288 with 0 Axes>
# 画信息比率分布直方图
far.plot_ic_hist(group_adjust=False, method='rank')
/opt/conda/lib/python3.5/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result. return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval /opt/conda/lib/python3.5/site-packages/matplotlib/axes/_axes.py:6571: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg. warnings.warn("The 'normed' kwarg is deprecated, and has been "
<Figure size 432x288 with 0 Axes>
# 画信息比率 qq 图
from scipy.stats import norm
far.plot_ic_qq(group_adjust=False, method='rank', theoretical_dist=norm)
<Figure size 432x288 with 0 Axes>
# 画信息比率 qq 图
from scipy.stats import t
far.plot_ic_qq(group_adjust=False, method='normal', theoretical_dist=t)
<Figure size 432x288 with 0 Axes>
# 画各分位数平均收益图
far.plot_quantile_returns_bar(by_group=False, demeaned=False, group_adjust=False)
<Figure size 432x288 with 0 Axes>
# 画最高分位减最低分位收益图
far.plot_mean_quantile_returns_spread_time_series(demeaned=False, group_adjust=False, bandwidth=1)
<Figure size 432x288 with 0 Axes>
# 画按行业分组信息比率(IC)图
far.plot_ic_by_group(group_adjust=False, method='rank')
<Figure size 432x288 with 0 Axes>
# 画因子自相关图
far.plot_factor_auto_correlation(rank=True)
<Figure size 432x288 with 0 Axes>
# 画最高最低分位换手率图
far.plot_top_bottom_quantile_turnover(periods=(1, 3, 9))
<Figure size 432x288 with 0 Axes>
# 画月度信息比率(IC)图
far.plot_monthly_ic_heatmap(group_adjust=False)
<Figure size 432x288 with 0 Axes>
# 画按因子值加权多空组合每日累积收益图
far.plot_cumulative_returns(period=1, demeaned=False, group_adjust=False)
<Figure size 432x288 with 0 Axes>
# 画做多最高分位做空最低分位多空组合每日累计收益图
far.plot_cumulative_returns_by_quantile(period=(1, 3, 9), demeaned=False, group_adjust=False)
<Figure size 432x288 with 0 Axes>
# 因子预测能力平均累计收益图
far.plot_quantile_average_cumulative_return(by_quantile=False, std_bar=False)
<Figure size 432x288 with 0 Axes>
本社区仅针对特定人员开放
查看需注册登录并通过风险意识测评
5秒后跳转登录页面...
移动端课程