请 [注册] 或 [登录]  | 返回主站

量化交易吧 /  量化平台 帖子:3364733 新帖:20

jqdata实现《量化投资技术分析实战》中ama均线的

爱汇小王子发表于:5 月 10 日 07:45回复(1)

补充研究部分最后的破图……

策略回测
ama_bt.PNG

量化投资训练营中给出的回测曲线
ama_lhtzxly.jpeg

jqdata实现《量化投资技术分析实战》中ama均线的计算¶

《量化投资技术分析实战》书中有对ama均线的介绍。并且通过公众号量化投资训练营,也找到了对ama均线的一些内容,综合形成这次ama均线的计算。

参考内容:

濮元恺,《量化投资技术分析实战》
量化投资训练营:
1. 不可忽视的AMA自适应移动均线交易系统(1)
2. 不可忽视的AMA自适应移动均线交易系统(2)
3. 股票指数(含期货)择时交易方法分享(1)
import pandas as pdimport matplotlib.pyplot as pltimport numpy as npimport  jqdatasdk
jqdatasdk.auth(tel, pwd)
zz500_df = jqdatasdk.get_price('000300.XSHG', start_date='2006-02-01', end_date='2018-11-19', frequency='daily', fields=['close'])
zz500_df['er'] = 0zz500_df['ama'] = 0zz500_df.plot()
<matplotlib.axes._subplots.AxesSubplot at 0xf684650>

ama计算方法与关键参数¶

ER效率系数¶

步骤1:价格方向

  价格方向被表示为整个时间段中的净价格变化。比如,使用n天的间隔(或n小时):

  direction = price – price[n];

  其中,direction是当前价格差或方向数值,price是当前价格(当日收盘价或小时收盘价),price[n]是n日前的收盘价(或n个周期前)。

步骤2:波动性

  波动性是市场噪音的总数量,它可以用许多不同的方法定义,但是这个计算使用了所有“日到日”或“小时到小时”的价格变化的总和(每一个都作为一个正数),在同样的n个周期上。

  如下表达:

  volatility = @sum(@abs(price – price[1]), n);

  其中,volatility是指波动性数值,@abs是绝对值函数,@sum(value, n)是n个周期中的数值之和函数。

步骤3:效率系数(ER)

  以上两个成分被组合起来,以表达方向移动对噪音之比,称之为效率系数,ER:

  Efficiency_Ratio = direction/volativity;

平滑系数¶

  fastest = 2/(N+1) = 2/(2+1) = 0.6667;

  slowest = 2/(N+1) = 2/(30+1) = 0.0645;

  smooth = ER*(fastest - slowest) + slowest;

  c = smooth*smooth;

AMA均线计算¶

AMA = AMA[1] + c*(price – AMA[1]);
def cal_ama(last_ama, cp_df, var_er = 14, fastest_N = 2, slowest_N = 30):fastest = 2/(fastest_N+1)slowest = 2/(slowest_N+1)cp_df = cp_df[-var_er : ]direction = cp_df.iloc[-1] - cp_df.iloc[0]#     print("direction           ==>" + str(direction))er_df = cp_df.diff()er_df = er_df.apply(lambda x : abs(x))volatility = er_df.sum()#     print("volatility           ==>" + str(volatility))efficiency_ratio  = direction / volatility#     print("efficiency_ratio==>" + str(efficiency_ratio))smooth = efficiency_ratio*(fastest - slowest) + slowest;c = smooth* smooth#     print("c                       ==>" + str(c))last_ama = last_ama + c*(cp_df.iloc[-1] - last_ama)ama = last_ama#     print("ama==>" + str(ama))return ama, efficiency_ratio
last_ama = 0timeperiod = 14pos = 0for index, row in zz500_df.iterrows():if pos < timeperiod:last_ama = zz500_df[0:pos]['close'].mean()#         print("last_ama==>" + str(last_ama))pos += 1continuecp_df = zz500_df[pos - timeperiod:pos]['close']ama, efficiency_ratio = cal_ama(last_ama, cp_df)zz500_df.loc[index,'er'] = efficiency_ratiozz500_df.loc[index,'ama'] = amalast_ama = amapos += 1

显示ama¶

fig = plt.figure(figsize=(16,6))ax1 = fig.add_subplot(1,1,1)ax1.semilogy(zz500_df.index, zz500_df['close'], color='blue', label='close')ax1.semilogy(zz500_df.index, zz500_df['ama'], color='yellow', label='close')# ax2 = ax1.twinx()# ax2.plot(zz500_df.index, zz500_df['er'], color='red', label='close')plt.show()

其他参数计算¶

1. 20日均线¶

2. ama均线标准差¶

在产生买入卖出信号时,有两种过滤条件,一种是是ama均线的波动率,另外一种是ama均线的差分波动率,都在此处进行计算

zz500_df['ma10'] = 0zz500_df['ma20'] = 0zz500_df['ama_diff_std20'] = 0zz500_df['ama_std30'] = 0ma10_pos = 10ma20_pos = 20ama_diff_std20_pos = 20ama30_pos = 30pos = 0for index, row in zz500_df.iterrows():if pos < 10:pos += 1continuema10 = zz500_df[pos-ma10_pos:pos]['close'].mean()zz500_df.loc[index,'ma10'] = ma10if pos < 20:pos += 1continuema20 =  zz500_df[pos-ma20_pos:pos]['close'].mean()zz500_df.loc[index,'ma20'] = ma20if pos < 50:pos += 1continueama_diff_std20 =  np.std(zz500_df[pos-ama_diff_std20_pos:pos]['ama'].diff(), ddof = 1)zz500_df.loc[index,'ama_diff_std20'] = ama_diff_std20ama_std30 =  np.std(zz500_df[pos-ama30_pos:pos]['ama'], ddof = 1)zz500_df.loc[index,'ama_std30'] = ama_std30pos += 1#     break
fig = plt.figure(figsize=(16,6))ax1 = fig.add_subplot(1,1,1)ax1.semilogy(zz500_df.index, zz500_df['close'], color='blue', label='close')ax1.semilogy(zz500_df.index, zz500_df['ama'], color='red', label='close')ax1.semilogy(zz500_df.index, zz500_df['ma20'], color='yellow', label='close')# ax2 = ax1.twinx()# ax2.plot(zz500_df.index, zz500_df['er'], color='red', label='close')plt.show()
# 保存到csv文件中,为后续回测,提供数据zz500_df.to_csv('d:\\ama.csv')

ama均线策略回测¶

在本地joinquant金融终端中读取存储的ama均线的数据,按照量化投资训练营中所给出的参数,进行回测,回测时直接读取的ama.csv中的每日ama和ama_std的数据,回测效果如下:

核心公式 

  1. AMA均线 = 按照AMA公式计算价格,参数2-30,

  2. ER效率系数参数14

  3. 过滤器 = AMA均线的30日标准差 * 过滤器系数(0.1)

核心规则:

  1. 两日AMA差值大于过滤器,做多

  2. 两日AMA差值小于过滤器,平多

与量化投资训练营中的回测进行对比¶

使用同样的参数进行构造,与量化投资训练营的回测数据还是有些许差异

 

全部回复

0/140

量化课程

    移动端课程