请 [注册] 或 [登录]  | 返回主站

量化交易吧 /  量化平台 帖子:3366811 新帖:18

申万异常财务指标研报研究

只求稳定发表于:5 月 10 日 06:09回复(1)

最近研究了一篇申万宏源证券的研报--《异常财务指标因子研究》。该研报提出六个基本面财务指标,不仅在一定程度上能识别上市公司财务造假的情况,更能有效预测未来盈余。本文按照该研报的描述尝试复现研究结果,验证异常财务因子的有效性。

一、异常财务指标单因子分析

首先我们列出6个异常财务指标的选取原因:

六组异常财务指标选取原因.png

以及其计算公式:

==(?1)××=(?1)××=(?1)××=×=(?1)××=×

  • 上述六个财务指标均采用季度数据构建,且均采用同比数据,能够消除季节性影响,为不同公司间可比,使用统一更新频率(5月1日、9月1日、11月1日更新新数据,不含年报数据)。
  • 在进一步研究之前,我们先对每个财务指标进行单因子检验,在全部A股中剔除金融行业股票,将股票按照各个异常因子值分为十组,各组内等权计算十分组表现,以及其IC、IR等指标,所有指标均经过市值行业中性化调整。
  1. 异常存货因子
    异常存货因子在样本期年化收益率的区分上较为明显,单调性也较好。IC均值为2.87%,IC_IR为0.53,多空组合年化收益率约为2.98%。

异常存货因子十分组样本期年化收益率(天).png异常存货因子样本期多空一十组合收益率(天).png

2.异常应收款因子
异常应收款因子区分度不大,但单调性更为明显。IC均值为2.78%,IC_IR为0.76,多空组合年化收益率约为4.47%。

异常应收款因子十分组样本期年化收益率(天).png异常应收款因子样本期多空一十组合收益率(天).png

3.异常其他应收款因子
异常其他应收款因子区分能力一般,单调性不强,但多空部分分化明显。IC均值为1.54%,IC_IR为0.39,多空组合年化收益率约为3.77%。

异常其他应收款因子十分组样本期年化收益率(天).png异常其他应收款因子样本期多空一十组合收益率(天).png

4.异常预付款项因子
异常预付款项因子分化情况与其他应收款相似。IC均值为1.67%,IC_IR为0.35,多空组合年化收益率约为2.40%。

异常预付款项因子十分组样本期年化收益率(天).png异常预付款项因子样本期多空一十组合收益率(天).png

5.异常销售管理费用因子
异常销售管理费用因子没有明显单调性,但前三组显著高于其他组合收益。IC均值为1.75%,IC_IR为0.44,多空组合年化收益率约为3.49%。

异常销售管理费用因子十分组样本期年化收益率(天).png异常销售管理费用因子样本期多空一十组合收益率(天).png

6.异常毛利润因子
异常毛利润因子在6个因子中表现最好,区分度、单调性都非常明显。IC均值为4.87%,IC_IR为1.11,多空组合年化收益率约为8.66%, 且比较稳定。

异常毛利率因子十分组样本期年化收益率(天).png异常毛利率因子样本期多空一十组合收益率(天).png

7.小结

  • 从各因子检验结果来看,异常存货、异常应收款、异常毛利润等因子具有较好的区分能力,异常其他应收款、异常预付款项、异常销售管理费用等因子则表现相对一般。
  • 从各因子方向来看,存货、应收款、其他应收款以及销售管理费用的异常增长(增速高于主营业务现金流增速),不利于公司未来表现,而预付款项、毛利润的大幅增长,则具有一定的相对收益。

六个异常财务指标单因子检验结果对比.png

二、异常财务因子构建及检验分析

  • 将上述6个异常财务指标分别进行截面上标准化后加总求和,得到一个汇总的新因子:异常财务因子。
  • 合成的异常财务因子在样本空间下的区分能力和分组单调性明显增强,在全市场非金融股票中,经市值行业中性化调整后的因子IC均值约为6.79%,IC_IR为1.55。但是就单一分组情况来看,无论哪一分组波动率和最大回撤都处于较高水平,单一组合风险暴露较大。

异常财务因子十分组测试结果.png

  • 多空组合表现较为稳定,年化收益率约为9.89%,最大回撤只有5.85%,夏普比率为1.071。

异常财务因子十分组样本期年化收益率(天).png异常财务因子样本期多空一十组合收益率(天).png

根据上述研究结果,有理由证明异常财务因子具有一定的策略增强效果,有兴趣的同学可以自己利用这个因子写一个策略试试。

注:研究代码为整洁打包成一个main函数,实际使用的时候建议把循环分开运行,否则在看到结果前耗时可能较长。

from jqdata import *
from jqfactor import *
import numpy as np
import pandas as pd
import datetime as dt
import math
import time


def main():
    l = ['abnormal_inventories', 'abnormal_account_receivable', 'abnormal_other_receivable', 
         'abnormal_advance_peceipts', 'abnormal_sa_expense', 'abnormal_gross_profit', 'abnormal_fundamental']
    for f in l:
        
        #求十分组年化收益并作柱状图
        df = get_multipleReturn10(f)
        m = []
        for c in df.columns:
            a1, t1 = return_line(df[c], f, plot = False)
            m.append(a1)
        
        m2 = np.array(m) ** (1/9)
        m_s = pd.DataFrame(m2 - 1, index = range(1, 11), columns = ['样本期年化收益率'])
        m_s.plot(kind = 'bar', title = t1)
        
        #画多空收益曲线
        r = ls_portfolio(f)
        a2, t2 = return_line(r, f)
        mdd = maxdrawdown(r)
        print(t2 + '的最大回撤为' + str(mdd))
        
        
        #计算IC_IR
        IC = get_multipleIC(f)
        print(t2 + 'IC均值为:' + str(mean(IC)) )
        print(t2 + 'IC_IR为:' + str(mean(IC)/std(IC)) )



#十分组收益率
def get_multipleReturn10(f):
    d = ['2008-11-01', '2009-05-01', '2009-09-01', '2009-11-01', '2010-05-01', '2010-09-01', '2010-11-01', 
         '2011-05-01', '2011-09-01', '2011-11-01', '2012-05-01', '2012-09-01', '2012-11-01',
         '2013-05-01', '2013-09-01', '2013-11-01', '2014-05-01', '2014-09-01', '2014-11-01',
         '2015-05-01', '2015-09-01', '2015-11-01', '2016-05-01', '2016-09-01', '2016-11-01',
         '2017-05-01', '2017-09-01', '2017-11-01', '2018-05-01', '2018-09-01', '2018-11-01']

    #建立df存储数据
    c = []
    for i in range(1, 11):
        c.append(str(i))
    df = pd.DataFrame(columns = c)

    for i in range(3, len(d) - 1):
        #股票池
        all_stocks = list(get_all_securities(['stock'], date = d[i]).index)
        s = set_feasible_stocks(all_stocks, d[i])
        #全部异常财务因子
        abdf = abnormal_fundamental(d[i], d[i - 3], s)
        #中性化
        abin = neutralize(abdf[f], how = ['sw_l1', 'market_cap'], date = d[i], axis = 0, fillna = 'sw_l1')
        abin_sorted = abin.sort_values(ascending = False)
        #abinIC = get_currentIC(d[i], d[i + 1], abin_sorted)
        #IC = pd.concat([IC, abinIC], axis = 0)
        
        #分组
        n = int(len(abin_sorted)/10)
        for j in range(1, 11):

            long = abin_sorted.index.tolist()[(j-1) * n : j * n]
            long_price = get_price(long, start_date = d[i], end_date = d[i + 1], fields = ['close', 'paused'])
            long_close = long_price['close']
            long_paused = long_price['paused']
            #去停牌
            for l in range(len(long_paused.index)):
                for m in range(len(long_paused.columns)):
                    if long_paused.iloc[l,m] == 1:
                        long_close.iloc[l,m] == np.nan
           
            for k in range(len(long_close.index) - 1):
                df.loc[long_close.index.tolist()[k], str(j)] = ((long_close.iloc[k + 1, :]/long_close.iloc[k, :]).dropna() - 1).mean()

    
    return df



#多空一十组合
def ls_portfolio(f):
    
    d = ['2008-11-01', '2009-05-01', '2009-09-01', '2009-11-01', '2010-05-01', '2010-09-01', '2010-11-01', 
         '2011-05-01', '2011-09-01', '2011-11-01', '2012-05-01', '2012-09-01', '2012-11-01',
         '2013-05-01', '2013-09-01', '2013-11-01', '2014-05-01', '2014-09-01', '2014-11-01',
         '2015-05-01', '2015-09-01', '2015-11-01', '2016-05-01', '2016-09-01', '2016-11-01',
         '2017-05-01', '2017-09-01', '2017-11-01', '2018-05-01', '2018-09-01', '2018-11-01', '2018-12-11']

    #IC = pd.DataFrame()
    r = []
    for i in range(3, len(d) - 1):
        #股票池
        all_stocks = list(get_all_securities(['stock'], date = d[i]).index)
        s = set_feasible_stocks(all_stocks, d[i])
        #全部异常财务因子
        abdf = abnormal_fundamental(d[i], d[i - 3], s)
        #中性化
        abin = neutralize(abdf[f], how = ['sw_l1', 'market_cap'], date = d[i], axis = 0, fillna = 'sw_l1')
        abin_sorted = abin.sort_values(ascending = False)
        #abinIC = get_currentIC(d[i], d[i + 1], abin_sorted)
        #IC = pd.concat([IC, abinIC], axis = 0)
        #分组,取第一组和第十组
        n = int(len(abin_sorted)/10)
        long = abin_sorted.index.tolist()[0:n]
        short = abin_sorted.index.tolist()[(-n-1):-1]
        
        #多头,去停牌
        long_price = get_price(long, start_date = d[i], end_date = d[i + 1], fields = ['close', 'paused'])
        long_close = long_price['close']
        long_paused = long_price['paused']
        for l in range(len(long_paused.index)):
            for m in range(len(long_paused.columns)):
                if long_paused.iloc[l,m] == 1:
                    long_close.iloc[l,m] == np.nan
        #long_open = get_price(long, end_date = d[i], count = 1, fields = ['close'])['close']
        #空头,去停牌
        short_price = get_price(short, start_date = d[i], end_date = d[i + 1], fields = ['close', 'paused'])
        short_close = short_price['close']
        short_paused = short_price['paused']
        for l in range(len(short_paused.index)):
            for m in range(len(short_paused.columns)):
                if short_paused.iloc[l,m] == 1:
                    short_close.iloc[l,m] == np.nan
        #short_open = get_price(short, end_date = d[i], count = 1, fields = ['close'])['close']
        #计算收益率
        for j in range(len(long_close.index) - 1):
            r.append(((long_close.iloc[j + 1, :]/long_close.iloc[j, :]).dropna() - 1).mean()
                     - ((short_close.iloc[j + 1, :]/short_close.iloc[j, :]).dropna() - 1).mean())

        #r.append((long_close.iloc[0, :]/long_open.iloc[0, :]).mean())
        #r.append((short_close.iloc[0, :]/short_open.iloc[0, :]).mean())
    return r


#画收益曲线,输入r为收益率时间序列,f为因子名称, plot默认为True,False则不画图
def return_line(r, f, plot = True):
    r = np.array(r) + 1
    p = []
    m = 1
    p.append(m)
    for i in range(0,len(r)):
        m *= r[i]
        p.append(m)
    
    
    l = ['abnormal_inventories', 'abnormal_account_receivable', 'abnormal_other_receivable', 
         'abnormal_advance_peceipts', 'abnormal_sa_expense', 'abnormal_gross_profit', 'abnormal_fundamental']
    t = ''
    if f == l[0]:
        t = '异常存货因子多空组合'
    elif f == l[1]:
        t = '异常应收款因子多空组合'
    elif f == l[2]:
        t = '异常其他应收款因子多空组合'
    elif f == l[3]:
        t = '异常预付款项因子多空组合'
    elif f == l[4]:
        t = '异常销售管理费用因子多空组合'
    elif f == l[5]:
        t = '异常毛利润因子多空组合'
    elif f == l[6]:
        t = '异常财务因子多空组合'
    
    if plot == True: 
        d = get_trade_days(start_date = '2009-11-01', end_date = '2018-12-11')[0: len(p)]
        p = pd.DataFrame(p, index = d, columns = ['多空收益率'])
        p.plot(title = t)
    
    return m, t

#计算最大回撤, 输入r为日收益率时间序列
def maxdrawdown(r):
    r1 = np.array(r) + 1
    m = 1
    r2 = []
    for i in range(len(r1)):
        m *= r1[i]
        r2.append(m)
    mdd = 0
    peak = r2[0]
    for i in range(len(r2)):
        if r2[i] > peak: 
            peak = r2[i]
        dd = (peak - r2[i]) / peak
        if dd > mdd:
            mdd = dd
    
    return mdd


#获取可行股票池,剔除金融类、停牌、st股票
def set_feasible_stocks(s, d):
    all_stocks = s
    #得到是否停牌信息的dataframe,停牌得1,未停牌得0
    suspended_info_df = get_price(list(all_stocks), end_date = d, count = 1, frequency = 'daily', fields = 'paused')['paused'].T
    #过滤未停牌股票 返回dataframe
    suspended_index = suspended_info_df.iloc[:,0] == 1
    #得到当日停牌股票的代码list:
    suspended_stocks = suspended_info_df[suspended_index].index.tolist()
    #得到st股票信息,st为True,非st为False
    st_info_df = get_extras('is_st', all_stocks, end_date = d, count = 1).T
    #过滤非st股票
    st_index = st_info_df.iloc[:,0] == True
    #得到st股票的代码list:
    st_stocks = st_info_df[st_index].index.tolist()
    #得到银行业股票代码
    bank_stocks = get_industry_stocks('801780', d)
    #得到非银金融业股票代码
    non_bank_fin_stocks = get_industry_stocks('801790', d)
    #合并股票代码列表
    suspended_stocks.extend(st_stocks)
    suspended_stocks.extend(bank_stocks)
    suspended_stocks.extend(non_bank_fin_stocks)
    
    #剔除金融类、停牌、st股票
    for stock in suspended_stocks:
        if stock in all_stocks:
            all_stocks.remove(stock)
    
    
    return all_stocks   


#d为当期,d2为去年同期,s为可行股票池
def abnormal_fundamental(d, d2, s):
    #查询营业收入
    q = query(valuation.code, income.operating_revenue).filter(valuation.code.in_(s))
    #获取当期营业收入
    df = get_fundamentals(q, d)
    #获取去年同期营业收入
    df2 = get_fundamentals(q, d2)
    #合并
    res = pd.merge(df,df2, on = 'code')
    #计算正常增长乘数
    normal_growth_multiplier = pd.DataFrame(res['operating_revenue_x']/res['operating_revenue_y'], 
                                            columns = ['normal_growth_multiplier'])
    normal_growth_multiplier = normal_growth_multiplier.join(pd.DataFrame(res['code']))
    #查询总资产
    q2 = query(valuation.code, balance.total_assets).filter(valuation.code.in_(s))
    #查询所需财务指标
    q3 = query(valuation.code, balance.inventories, balance.account_receivable, balance.advance_payment, 
                balance.other_receivable, balance.advance_peceipts, income.sale_expense, income.administration_expense, 
                indicator.gross_profit_margin).filter(valuation.code.in_(s))
    #获取当期总资产
    df5 = get_fundamentals(q2, d)
    #获取当期所需财务指标
    df6 = get_fundamentals(q3, d)
    #获取去年同期所需财务指标
    df7 = get_fundamentals(q3, d2)
    #合并表,当期后缀为_x, 去年同期后缀为_y
    res2 = pd.merge(df5, df6, on = 'code', how = 'inner')
    res2 = pd.merge(res2, df7, on = 'code', how = 'inner')
    res2 = pd.merge(res2, normal_growth_multiplier, on = 'code', how = 'inner')
    res2 = pd.merge(res2, res, on = 'code', how = 'inner')
    
    #清洗
    res2.dropna(how = 'any', inplace = True)
    #异常存货
    abnormal_inventories = (-1) * (res2['inventories_x'] - (res2['inventories_y'] * res2['normal_growth_multiplier'])) / res2['total_assets']
    abnormal_inventories = pd.DataFrame(abnormal_inventories, columns = ['abnormal_inventories'])
    #异常应收款
    abnormal_account_receivable = (-1) * ( ( res2['account_receivable_x'] + res2['advance_payment_x'] ) - ( ( res2['account_receivable_y'] + 
                                    res2['advance_payment_y'] ) * res2['normal_growth_multiplier'] ) ) / res2['total_assets']
    abnormal_account_receivable = pd.DataFrame(abnormal_account_receivable, columns = ['abnormal_account_receivable'])
    #异常其他应收款
    abnormal_other_receivable = (-1) * (res2['other_receivable_x'] - (res2['other_receivable_y'] * res2['normal_growth_multiplier'] ) ) / res2['total_assets']
    abnormal_other_receivable = pd.DataFrame(abnormal_other_receivable, columns = ['abnormal_other_receivable'] )
    #异常预收款
    abnormal_advance_peceipts = (res2['advance_peceipts_x'] - (res2['advance_peceipts_y'] * res2['normal_growth_multiplier'] ) ) / res2['total_assets']
    abnormal_advance_peceipts = pd.DataFrame(abnormal_advance_peceipts, columns = ['abnormal_advance_peceipts'] )
    #异常销售管理费用
    abnormal_sa_expense = (-1) * ( ( res2['sale_expense_x'] + res2['administration_expense_x'] ) - ( ( res2['sale_expense_y'] + 
                                    res2['administration_expense_y']) * res2['normal_growth_multiplier'] ) ) / res2['total_assets']
    abnormal_sa_expense = pd.DataFrame(abnormal_sa_expense, columns = ['abnormal_sa_expense'] )
    #异常毛利润
    abnormal_gross_profit = ( ( res2['gross_profit_margin_x'] * res2['operating_revenue_x'] ) - ( res2['gross_profit_margin_y'] * 
                                    res2['operating_revenue_y'] * res2['normal_growth_multiplier'] ) ) / res2['total_assets']
    abnormal_gross_profit = pd.DataFrame(abnormal_gross_profit, columns = ['abnormal_gross_profit'] )
    
    
    #按列并表
    l = [abnormal_inventories, abnormal_account_receivable, abnormal_other_receivable, 
         abnormal_advance_peceipts, abnormal_sa_expense, abnormal_gross_profit]
    result = pd.concat(l, axis = 1)
    result.index = res2['code']
    #按列标准化
    result = standardlize(result, axis = 0)
    
    #加总求和
    final = pd.DataFrame(result.apply(sum, axis = 1), columns = ['abnormal_fundamental'])
    
    result['code'] = res2['code'].tolist()
    final['code'] = res2['code'].tolist()

    #并表
    result = pd.merge(result, final, on = 'code')

    result.index = res2['code']

    return result


def get_multipleIC(f):
    d = ['2008-11-01', '2009-05-01', '2009-09-01', '2009-11-01', '2010-05-01', '2010-09-01', '2010-11-01', 
         '2011-05-01', '2011-09-01', '2011-11-01', '2012-05-01', '2012-09-01', '2012-11-01',
         '2013-05-01', '2013-09-01', '2013-11-01', '2014-05-01', '2014-09-01', '2014-11-01',
         '2015-05-01', '2015-09-01', '2015-11-01', '2016-05-01', '2016-09-01', '2016-11-01',
         '2017-05-01', '2017-09-01', '2017-11-01', '2018-05-01', '2018-09-01', '2018-11-01']


    IC = []
    #按更新期计算IC
    for i in range(3, len(d) - 1):
        all_stocks = list(get_all_securities(['stock'], date = d[i]).index)
        s = set_feasible_stocks(all_stocks, d[i])
        abdf = abnormal_fundamental(d[i], d[i - 3], s)
        abin = neutralize(abdf[f], how = ['sw_l1', 'market_cap'], date = d[i], axis = 0, fillna = 'sw_l1')
        abin_sorted = abin.sort_values(ascending = False)
        abinIC = get_currentIC(d[i], d[i + 1], abin_sorted)

        IC.append(abinIC)
    
    return IC

def get_currentIC(d, d2, f):

    factors = f
    #获取历史收盘价
    h_price = get_price(factors.index.tolist(), start_date = d, end_date = d2, frequency = 'daily', fields = ['close'], skip_paused = False, fq = 'pre')['close']
    yield20 = pd.DataFrame( (h_price.iloc[-1, :] / h_price.iloc[0, :] - 1), index = factors.index.tolist(), columns = ['yield_20'])

    temp = pd.merge(pd.DataFrame(factors), pd.DataFrame(yield20), left_index = True, right_index = True)
    IC = temp.corr(method = 'spearman').iloc[0,1]

    
    return IC
main()

全部回复

0/140

量化课程

    移动端课程