获取申万官网申万行业历史行情数据
#获取申万官网申万行业数据
#导入库
import numpy as np
import pandas as pd
import requests
import json
from datetime import timedelta,date
# 获取申万官网申万行业数据
# code:行业代码
# frequency:day/week/month
# start_date:None(表示最早日期)
# end_date:None(表示今天日期)
# fields:None(表示所有字段)
def get_sw_data(code=None,start_date=None,end_date=None,frequency='day',fields=None):
#headers
header={
'HOST':'www.swsindex.com',
'Referer':'http://www.swsindex.com/idx0200.aspx?columnid=8838&type=Day',
'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) \
Chrome/53.0.2785.104 Safari/537.36 Core/1.53.4482.400 QQBrowser/9.7.13001.400'
}
#传入参数
param={
'tablename':'V_Report',
'key':'id',
#页面序号,每页返回20条数据
'p':'1',
#查询语句,查询的代码、日期、数据类型
"where":"swindexcode in ('801020') and BargainDate>='2018-04-02' and BargainDate<='2018-04-24' and type='Day'",
#排序(swindexcode asc表示按照代码升序,BargainDate_1表示按照日期降序,_2表示按照升序)
'orderby':'swindexcode asc,BargainDate_2',
#返回的字段
'fieldlist':'SwIndexCode,SwIndexName,BargainDate,OpenIndex,CloseIndex,MaxIndex,MinIndex,BargainAmount,BargainSum,Markup,TurnoverRate,\
PE,PB,MeanPrice,BargainSumRate,NegotiablesShareSum,NegotiablesShareSum2,DP',
'pagecount':'1',
'timed':'1524497094532',
}
#数据表表头
sw_columns_list=['SwIndexCode','SwIndexName','BargainDate','OpenIndex','CloseIndex','MaxIndex','MinIndex','BargainAmount','BargainSum',
'Markup','TurnoverRate','PE','PB','MeanPrice','BargainSumRate','NegotiablesShareSum','NegotiablesShareSum2','DP']
#数据类型(日、周、月)
frequency_list=['day','week','month']
#申万一级行业代码列表
code_list=['801010','801020','801030','801040','801050','801080','801110','801120','801130','801140','801150','801160','801170','801180',
'801200','801210','801230','801710','801720','801730','801740','801750','801760','801770','801780','801790','801880','801890']
#配置查询语句
where="swindexcode in ("
if code is None:
#如果代码为空,则代码为代码列表
code=str(code_list).replace('[','').replace(']','')
else:
if type(code)==list:
#如果代码为列表,判断代码是否在代码列表中
if set(code).issubset(set(code_list)):
code_str=str(code).replace('[','').replace(']','')
else:
code_str=str(code_list).replace('[','').replace(']','')
if type(code)==str:
if code in code_list:
code_str="'"+code+"'"
else:
code_str=str(code_list).replace('[','').replace(']','')
where+=code_str
#配置日期
today_str=pd.datetime.today().strftime('%Y-%m-%d')
if (start_date is None) or (start_date<'1999-12-30') or (start_date>today_str):
start_date='1999-12-30'
where+=") and BargainDate>='"
where+=start_date
if (end_date is None) or (end_date>today_str) or (end_date<'1999-12-30'):
end_date=today_str
where+="' and BargainDate<='"
where+=end_date
#配置数据类型
if not(frequency in frequency_list):
frequency='day'
where+="' and type='"
where+=frequency
where+="'"
param['where']=where
#配置字段
columns=sw_columns_list
fieldlist=str(sw_columns_list).replace(" ","").replace("'","").replace('[',"").replace(']',"")
if not(fields is None):
if(set(fields).issubset(set(sw_columns_list))):
if not (['SwIndexCode','SwIndexName','BargainDate'] in fields):
fields=['SwIndexCode','SwIndexName','BargainDate']+fields
fieldlist=str(fields).replace(" ","").replace("'","").replace('[',"").replace(']',"")
columns=fields
param['fieldlist']=fieldlist
df=pd.DataFrame()
#url
url='http://www.swsindex.com/handler.aspx'
#页面计数器
page=1
while True:
#获取数据
ret=requests.get(url,data=param,headers=header)
if not (ret.ok is True):
break
#整理引号、日期格式
data=ret.text.replace("'", '"').replace(' 0:00:00','').replace('/','-')
#解析数据
data=json.loads(data).get('root')
if len(data)==0:
break
#追加数据表
df=df.append(pd.DataFrame(data,columns=columns))
#设置页面计数器
page+=1
param['p']=str(page)
if len(df)!=0:
df.BargainDate=pd.to_datetime(df.BargainDate,format='%Y-%m-%d')
#返回数据
return df
df=get_sw_data('801010',start_date='2018-04-23')
df
SwIndexCode | SwIndexName | BargainDate | OpenIndex | CloseIndex | MaxIndex | MinIndex | BargainAmount | BargainSum | Markup | TurnoverRate | PE | PB | MeanPrice | BargainSumRate | NegotiablesShareSum | NegotiablesShareSum2 | DP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 801010 | 农林牧渔 | 2018-04-23 | 2660.97 | 2628.76 | 2661.68 | 2615.21 | 75182 | 687374 | -1.33 | 1.0162 | 27.45 | 2.86 | 11.96 | 1.75 | 66565165.81 | 715754.47 | 1.46 |
1 | 801010 | 农林牧渔 | 2018-04-24 | 2629.01 | 2666.11 | 2668.55 | 2628.56 | 66003 | 647119 | 1.42 | 0.8922 | 27.95 | 2.87 | 12.20 | 1.43 | 67545648.66 | 726297.30 | 1.44 |
2 | 801010 | 农林牧渔 | 2018-04-25 | 2658.15 | 2652.06 | 2664.91 | 2649.23 | 60600 | 605600 | -0.53 | 0.8178 | 27.78 | 2.85 | 12.08 | 1.44 | 67189712.38 | 722470.03 | 1.45 |
3 | 801010 | 农林牧渔 | 2018-04-26 | 2648.26 | 2614.21 | 2653.93 | 2610.00 | 73849 | 732824 | -1.43 | 0.9965 | 27.33 | 2.81 | 11.86 | 1.73 | 66282357.87 | 712713.53 | 1.47 |
df=get_sw_data(code=['801010','801020'],start_date='2018-04-23',fields=['PE','PB'])
df
SwIndexCode | SwIndexName | BargainDate | PE | PB | |
---|---|---|---|---|---|
0 | 801010 | 农林牧渔 | 2018-04-23 | 27.45 | 2.86 |
1 | 801010 | 农林牧渔 | 2018-04-24 | 27.95 | 2.87 |
2 | 801010 | 农林牧渔 | 2018-04-25 | 27.78 | 2.85 |
3 | 801010 | 农林牧渔 | 2018-04-26 | 27.33 | 2.81 |
4 | 801020 | 采掘 | 2018-04-23 | 16.79 | 1.38 |
5 | 801020 | 采掘 | 2018-04-24 | 16.85 | 1.40 |
6 | 801020 | 采掘 | 2018-04-25 | 16.91 | 1.39 |
7 | 801020 | 采掘 | 2018-04-26 | 16.97 | 1.36 |
df=get_sw_data('801010',start_date='2018-03-1',frequency='week')
df
SwIndexCode | SwIndexName | BargainDate | OpenIndex | CloseIndex | MaxIndex | MinIndex | BargainAmount | BargainSum | Markup | TurnoverRate | PE | PB | MeanPrice | BargainSumRate | NegotiablesShareSum | NegotiablesShareSum2 | DP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 801010 | 农林牧渔 | 2018-03-02 | 2727.50 | 2730.01 | 2736.61 | 2723.59 | 386007 | 3172591 | 0.63 | 0.9749 | 31.40 | 3.03 | 11.81 | 1.45 | 67991460.10 | 739037.61 | 1.56 |
1 | 801010 | 农林牧渔 | 2018-03-09 | 2746.99 | 2785.28 | 2786.60 | 2745.61 | 326770 | 2973270 | 2.02 | 0.9271 | 32.02 | 3.09 | 12.18 | 1.34 | 69377561.55 | 754103.93 | 1.53 |
2 | 801010 | 农林牧渔 | 2018-03-16 | 2759.08 | 2750.86 | 2771.38 | 2750.72 | 361394 | 3205744 | -1.24 | 0.7277 | 31.59 | 3.05 | 12.10 | 1.34 | 68818359.97 | 748025.65 | 1.54 |
3 | 801010 | 农林牧渔 | 2018-03-23 | 2698.33 | 2741.01 | 2805.03 | 2691.86 | 496488 | 4330554 | -0.36 | 3.3006 | 31.50 | 3.03 | 12.04 | 1.85 | 68909747.48 | 749018.99 | 1.54 |
4 | 801010 | 农林牧渔 | 2018-03-30 | 2713.72 | 2715.17 | 2717.83 | 2700.17 | 643216 | 5506492 | -0.94 | 1.2378 | 31.00 | 3.01 | 12.18 | 2.22 | 68654502.68 | 746244.59 | 1.55 |
5 | 801010 | 农林牧渔 | 2018-04-13 | 2741.72 | 2722.86 | 2745.83 | 2718.02 | 517521 | 4917642 | -2.58 | 0.9061 | 28.41 | 2.97 | 12.72 | 2.21 | 69145492.55 | 743499.92 | 1.41 |
6 | 801010 | 农林牧渔 | 2018-04-20 | 2691.73 | 2664.20 | 2696.91 | 2660.21 | 530601 | 5001051 | -2.15 | 1.1773 | 27.88 | 2.89 | 12.25 | 2.14 | 67586558.04 | 726737.18 | 1.44 |
本社区仅针对特定人员开放
查看需注册登录并通过风险意识测评
5秒后跳转登录页面...
移动端课程