昨天看到了lei_shirley老师的融资余额占比研究,受了些启发。谈一谈前十大股东里涵盖的信息。
庄家拉升股价由于资金有限,一般需要外部资金支持,往往会通过信托或者资管产品配资(庄家购买劣后级)来实现控盘。这只是往往,并不是绝对。所以,当在前十大股东看到“资管”和“信托”这类词的时候(我的关键词设置了'资管产品','信托','资产管理计划','集合'四个,也许还有疏漏。),我往往是打退堂鼓的,不希望给别人抬轿子,托盘子。再加上现在去杠杆的势头,这些配资托起来的盘子一旦跌破平仓线,卖盘会如洪水猛兽一般袭来。
我统计了沪深3000余只股票前十大股东带有“资管”和“信托”的占有比例,从大到小排序。计算自今年年初至上周四的回报(上周五和本周一实属特殊)。回报分为3组,第一组Head是排名前300只股票的平均回报,也就是“资管”和“信托”占比前300多的。第二组Tail是排名后300只股票的平均回报,也就是“资管”和“信托”占比最少的300个。第三组All是全部股票的平均回报。
数据长这个样子:
同时,我按"融资比例"从大到小排序,按上述规则计算了回报。
最后,将上述两样加总排序,计算分析,得到如下结果:
正如我们计划看到的,那些前十大股东中“资管”和“信托”占比多的,在今年下跌的幅度比总体和占比少的要更加显著。
为什么尾巴tail和全部all的结果那么近似,大概是因为尾巴都是0,all中也大多是0吧。
其中编写的get_ratio_table函数,我觉得比较有用。除了查“资管“和”信托”外,你也可以查查国家队的持股。
比如说:“中国证券金融”
结果:
话说上周末释放众多利好,也许这些担心平仓的负alpha股票未来更容易反弹吧。
后记:
我个人比较感兴趣的是查查场外期权一级交易商那几家券商。
import pandas as pd
from jqdata import *
import string
def get_top10_shareholder(stock):
q = query(finance.STK_SHAREHOLDER_FLOATING_TOP10.code,finance.STK_SHAREHOLDER_FLOATING_TOP10.pub_date,finance.STK_SHAREHOLDER_FLOATING_TOP10.shareholder_name,finance.STK_SHAREHOLDER_FLOATING_TOP10.share_ratio).\
filter(finance.STK_SHAREHOLDER_FLOATING_TOP10.code==stock)
df = finance.run_query(q).sort_values('pub_date',ascending=False)[0:10].sort_values('share_ratio',ascending=False)
df.index=range(min(len(df),10))
return df
def get_ratio(share_info,word_list):
ratio={}
#weight_list=[]
for word in word_list:
weight=0
for i,shareholder in enumerate(list(share_info['shareholder_name'].values)):
if shareholder.find(word)!=-1:
weight=weight+share_info.iloc[i,3]
ratio[word]=weight
#weight_list.append(weight)
return ratio
def get_ratio_table(word_list,stock_list):
print('一共有',len(stock_list),'股票,你就等吧')
result=[]
count=0
for stock in stock_list:
share_info=get_top10_shareholder(stock)
if share_info.empty:
continue
ratio_dict=get_ratio(share_info,word_list)
ratio_df=pd.DataFrame(ratio_dict,index=[stock])
result.append(ratio_df)
count=count+1
print(count,end=',')
df=pd.concat(result,axis=0)
df['关键词合计']=sum(df,axis=1)
return df
def get_mtss_table(stock_list,date):
print('\n取融资融券数据,再等会儿~')
df_mtss=get_mtss(stock_list, start_date=date, end_date=date,fields=['sec_code','fin_value'])
df_mtss.index=df_mtss['sec_code'].values
del df_mtss['sec_code']
stock_list=list(df_mtss.index)
q = query(valuation.code,valuation.circulating_market_cap).filter(valuation.code.in_(stock_list))
df_mktcap = get_fundamentals(q)
df_mktcap.index=df_mktcap['code'].values
del df_mktcap['code']
df=pd.concat([df_mtss,df_mktcap],axis=1)
df['融资比例']=df['fin_value']/df['circulating_market_cap']/10**8*100
del df['fin_value']
del df['circulating_market_cap']
return df
def get_my_table(word_list,stock_list,date,sortby='总合计'):
df_ratio=get_ratio_table(word_list,stock_list)
df_mtss=get_mtss_table(stock_list,date)
df=pd.concat([df_ratio,df_mtss],axis=1).fillna(0)
df['总合计']=df['关键词合计']+df['融资比例']
name=[get_security_info(i).display_name for i in df.index]
df['股票名称']=name
df=df[['股票名称']+list(df.columns)[:-1]]
df=round(df,2)
df=df.sort_values(sortby,ascending=False)
print('\n完成')
return df
#输入
word_list=['资管产品','信托','资产管理计划','集合']
stock_list=list(get_all_securities(types=['stock']).index)
date='2018-10-19' #最近一个交易日
sortby='关键词合计'
#结果
df=get_my_table(word_list,stock_list,date,sortby)
一共有 3628 股票,你就等吧 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025,1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115,1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130,1131,1132,1133,1134,1135,1136,1137,1138,1139,1140,1141,1142,1143,1144,1145,1146,1147,1148,1149,1150,1151,1152,1153,1154,1155,1156,1157,1158,1159,1160,1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,1171,1172,1173,1174,1175,1176,1177,1178,1179,1180,1181,1182,1183,1184,1185,1186,1187,1188,1189,1190,1191,1192,1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,1204,1205,1206,1207,1208,1209,1210,1211,1212,1213,1214,1215,1216,1217,1218,1219,1220,1221,1222,1223,1224,1225,1226,1227,1228,1229,1230,1231,1232,1233,1234,1235,1236,1237,1238,1239,1240,1241,1242,1243,1244,1245,1246,1247,1248,1249,1250,1251,1252,1253,1254,1255,1256,1257,1258,1259,1260,1261,1262,1263,1264,1265,1266,1267,1268,1269,1270,1271,1272,1273,1274,1275,1276,1277,1278,1279,1280,1281,1282,1283,1284,1285,1286,1287,1288,1289,1290,1291,1292,1293,1294,1295,1296,1297,1298,1299,1300,1301,1302,1303,1304,1305,1306,1307,1308,1309,1310,1311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321,1322,1323,1324,1325,1326,1327,1328,1329,1330,1331,1332,1333,1334,1335,1336,1337,1338,1339,1340,1341,1342,1343,1344,1345,1346,1347,1348,1349,1350,1351,1352,1353,1354,1355,1356,1357,1358,1359,1360,1361,1362,1363,1364,1365,1366,1367,1368,1369,1370,1371,1372,1373,1374,1375,1376,1377,1378,1379,1380,1381,1382,1383,1384,1385,1386,1387,1388,1389,1390,1391,1392,1393,1394,1395,1396,1397,1398,1399,1400,1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,1412,1413,1414,1415,1416,1417,1418,1419,1420,1421,1422,1423,1424,1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475,1476,1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,1490,1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,1503,1504,1505,1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520,1521,1522,1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,1535,1536,1537,1538,1539,1540,1541,1542,1543,1544,1545,1546,1547,1548,1549,1550,1551,1552,1553,1554,1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565,1566,1567,1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580,1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,1594,1595,1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609,1610,1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622,1623,1624,1625,1626,1627,1628,1629,1630,1631,1632,1633,1634,1635,1636,1637,1638,1639,1640,1641,1642,1643,1644,1645,1646,1647,1648,1649,1650,1651,1652,1653,1654,1655,1656,1657,1658,1659,1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670,1671,1672,1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1683,1684,1685,1686,1687,1688,1689,1690,1691,1692,1693,1694,1695,1696,1697,1698,1699,1700,1701,1702,1703,1704,1705,1706,1707,1708,1709,1710,1711,1712,1713,1714,1715,1716,1717,1718,1719,1720,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730,1731,1732,1733,1734,1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745,1746,1747,1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,1760,1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,1773,1774,1775,1776,1777,1778,1779,1780,1781,1782,1783,1784,1785,1786,1787,1788,1789,1790,1791,1792,1793,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805,1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,1835,1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,1848,1849,1850,1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,1862,1863,1864,1865,1866,1867,1868,1869,1870,1871,1872,1873,1874,1875,1876,1877,1878,1879,1880,1881,1882,1883,1884,1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895,1896,1897,1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,1910,1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,1933,1934,1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,1947,1948,1949,1950,1951,1952,1953,1954,1955,1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045,2046,2047,2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,2060,2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075,2076,2077,2078,2079,2080,2081,2082,2083,2084,2085,2086,2087,2088,2089,2090,2091,2092,2093,2094,2095,2096,2097,2098,2099,2100,2101,2102,2103,2104,2105,2106,2107,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120,2121,2122,2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,2135,2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,2148,2149,2150,2151,2152,2153,2154,2155,2156,2157,2158,2159,2160,2161,2162,2163,2164,2165,2166,2167,2168,2169,2170,2171,2172,2173,2174,2175,2176,2177,2178,2179,2180,2181,2182,2183,2184,2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195,2196,2197,2198,2199,2200,2201,2202,2203,2204,2205,2206,2207,2208,2209,2210,2211,2212,2213,2214,2215,2216,2217,2218,2219,2220,2221,2222,2223,2224,2225,2226,2227,2228,2229,2230,2231,2232,2233,2234,2235,2236,2237,2238,2239,2240,2241,2242,2243,2244,2245,2246,2247,2248,2249,2250,2251,2252,2253,2254,2255,2256,2257,2258,2259,2260,2261,2262,2263,2264,2265,2266,2267,2268,2269,2270,2271,2272,2273,2274,2275,2276,2277,2278,2279,2280,2281,2282,2283,2284,2285,2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,2298,2299,2300,2301,2302,2303,2304,2305,2306,2307,2308,2309,2310,2311,2312,2313,2314,2315,2316,2317,2318,2319,2320,2321,2322,2323,2324,2325,2326,2327,2328,2329,2330,2331,2332,2333,2334,2335,2336,2337,2338,2339,2340,2341,2342,2343,2344,2345,2346,2347,2348,2349,2350,2351,2352,2353,2354,2355,2356,2357,2358,2359,2360,2361,2362,2363,2364,2365,2366,2367,2368,2369,2370,2371,2372,2373,2374,2375,2376,2377,2378,2379,2380,2381,2382,2383,2384,2385,2386,2387,2388,2389,2390,2391,2392,2393,2394,2395,2396,2397,2398,2399,2400,2401,2402,2403,2404,2405,2406,2407,2408,2409,2410,2411,2412,2413,2414,2415,2416,2417,2418,2419,2420,2421,2422,2423,2424,2425,2426,2427,2428,2429,2430,2431,2432,2433,2434,2435,2436,2437,2438,2439,2440,2441,2442,2443,2444,2445,2446,2447,2448,2449,2450,2451,2452,2453,2454,2455,2456,2457,2458,2459,2460,2461,2462,2463,2464,2465,2466,2467,2468,2469,2470,2471,2472,2473,2474,2475,2476,2477,2478,2479,2480,2481,2482,2483,2484,2485,2486,2487,2488,2489,2490,2491,2492,2493,2494,2495,2496,2497,2498,2499,2500,2501,2502,2503,2504,2505,2506,2507,2508,2509,2510,2511,2512,2513,2514,2515,2516,2517,2518,2519,2520,2521,2522,2523,2524,2525,2526,2527,2528,2529,2530,2531,2532,2533,2534,2535,2536,2537,2538,2539,2540,2541,2542,2543,2544,2545,2546,2547,2548,2549,2550,2551,2552,2553,2554,2555,2556,2557,2558,2559,2560,2561,2562,2563,2564,2565,2566,2567,2568,2569,2570,2571,2572,2573,2574,2575,2576,2577,2578,2579,2580,2581,2582,2583,2584,2585,2586,2587,2588,2589,2590,2591,2592,2593,2594,2595,2596,2597,2598,2599,2600,2601,2602,2603,2604,2605,2606,2607,2608,2609,2610,2611,2612,2613,2614,2615,2616,2617,2618,2619,2620,2621,2622,2623,2624,2625,2626,2627,2628,2629,2630,2631,2632,2633,2634,2635,2636,2637,2638,2639,2640,2641,2642,2643,2644,2645,2646,2647,2648,2649,2650,2651,2652,2653,2654,2655,2656,2657,2658,2659,2660,2661,2662,2663,2664,2665,2666,2667,2668,2669,2670,2671,2672,2673,2674,2675,2676,2677,2678,2679,2680,2681,2682,2683,2684,2685,2686,2687,2688,2689,2690,2691,2692,2693,2694,2695,2696,2697,2698,2699,2700,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711,2712,2713,2714,2715,2716,2717,2718,2719,2720,2721,2722,2723,2724,2725,2726,2727,2728,2729,2730,2731,2732,2733,2734,2735,2736,2737,2738,2739,2740,2741,2742,2743,2744,2745,2746,2747,2748,2749,2750,2751,2752,2753,2754,2755,2756,2757,2758,2759,2760,2761,2762,2763,2764,2765,2766,2767,2768,2769,2770,2771,2772,2773,2774,2775,2776,2777,2778,2779,2780,2781,2782,2783,2784,2785,2786,2787,2788,2789,2790,2791,2792,2793,2794,2795,2796,2797,2798,2799,2800,2801,2802,2803,2804,2805,2806,2807,2808,2809,2810,2811,2812,2813,2814,2815,2816,2817,2818,2819,2820,2821,2822,2823,2824,2825,2826,2827,2828,2829,2830,2831,2832,2833,2834,2835,2836,2837,2838,2839,2840,2841,2842,2843,2844,2845,2846,2847,2848,2849,2850,2851,2852,2853,2854,2855,2856,2857,2858,2859,2860,2861,2862,2863,2864,2865,2866,2867,2868,2869,2870,2871,2872,2873,2874,2875,2876,2877,2878,2879,2880,2881,2882,2883,2884,2885,2886,2887,2888,2889,2890,2891,2892,2893,2894,2895,2896,2897,2898,2899,2900,2901,2902,2903,2904,2905,2906,2907,2908,2909,2910,2911,2912,2913,2914,2915,2916,2917,2918,2919,2920,2921,2922,2923,2924,2925,2926,2927,2928,2929,2930,2931,2932,2933,2934,2935,2936,2937,2938,2939,2940,2941,2942,2943,2944,2945,2946,2947,2948,2949,2950,2951,2952,2953,2954,2955,2956,2957,2958,2959,2960,2961,2962,2963,2964,2965,2966,2967,2968,2969,2970,2971,2972,2973,2974,2975,2976,2977,2978,2979,2980,2981,2982,2983,2984,2985,2986,2987,2988,2989,2990,2991,2992,2993,2994,2995,2996,2997,2998,2999,3000,3001,3002,3003,3004,3005,3006,3007,3008,3009,3010,3011,3012,3013,3014,3015,3016,3017,3018,3019,3020,3021,3022,3023,3024,3025,3026,3027,3028,3029,3030,3031,3032,3033,3034,3035,3036,3037,3038,3039,3040,3041,3042,3043,3044,3045,3046,3047,3048,3049,3050,3051,3052,3053,3054,3055,3056,3057,3058,3059,3060,3061,3062,3063,3064,3065,3066,3067,3068,3069,3070,3071,3072,3073,3074,3075,3076,3077,3078,3079,3080,3081,3082,3083,3084,3085,3086,3087,3088,3089,3090,3091,3092,3093,3094,3095,3096,3097,3098,3099,3100,3101,3102,3103,3104,3105,3106,3107,3108,3109,3110,3111,3112,3113,3114,3115,3116,3117,3118,3119,3120,3121,3122,3123,3124,3125,3126,3127,3128,3129,3130,3131,3132,3133,3134,3135,3136,3137,3138,3139,3140,3141,3142,3143,3144,3145,3146,3147,3148,3149,3150,3151,3152,3153,3154,3155,3156,3157,3158,3159,3160,3161,3162,3163,3164,3165,3166,3167,3168,3169,3170,3171,3172,3173,3174,3175,3176,3177,3178,3179,3180,3181,3182,3183,3184,3185,3186,3187,3188,3189,3190,3191,3192,3193,3194,3195,3196,3197,3198,3199,3200,3201,3202,3203,3204,3205,3206,3207,3208,3209,3210,3211,3212,3213,3214,3215,3216,3217,3218,3219,3220,3221,3222,3223,3224,3225,3226,3227,3228,3229,3230,3231,3232,3233,3234,3235,3236,3237,3238,3239,3240,3241,3242,3243,3244,3245,3246,3247,3248,3249,3250,3251,3252,3253,3254,3255,3256,3257,3258,3259,3260,3261,3262,3263,3264,3265,3266,3267,3268,3269,3270,3271,3272,3273,3274,3275,3276,3277,3278,3279,3280,3281,3282,3283,3284,3285,3286,3287,3288,3289,3290,3291,3292,3293,3294,3295,3296,3297,3298,3299,3300,3301,3302,3303,3304,3305,3306,3307,3308,3309,3310,3311,3312,3313,3314,3315,3316,3317,3318,3319,3320,3321,3322,3323,3324,3325,3326,3327,3328,3329,3330,3331,3332,3333,3334,3335,3336,3337,3338,3339,3340,3341,3342,3343,3344,3345,3346,3347,3348,3349,3350,3351,3352,3353,3354,3355,3356,3357,3358,3359,3360,3361,3362,3363,3364,3365,3366,3367,3368,3369,3370,3371,3372,3373,3374,3375,3376,3377,3378,3379,3380,3381,3382,3383,3384,3385,3386,3387,3388,3389,3390,3391,3392,3393,3394,3395,3396,3397,3398,3399,3400,3401,3402,3403,3404,3405,3406,3407,3408,3409,3410,3411,3412,3413,3414,3415,3416,3417,3418,3419,3420,3421,3422,3423,3424,3425,3426,3427,3428,3429,3430,3431,3432,3433,3434,3435,3436,3437,3438,3439,3440,3441,3442,3443,3444,3445,3446,3447,3448,3449,3450,3451,3452,3453,3454,3455,3456,3457,3458,3459,3460,3461,3462,3463,3464,3465,3466,3467,3468,3469,3470,3471,3472,3473,3474,3475,3476,3477,3478,3479,3480,3481,3482,3483,3484,3485,3486,3487,3488,3489,3490,3491,3492,3493,3494,3495,3496,3497,3498,3499,3500,3501,3502,3503,3504,3505,3506,3507,3508,3509,3510,3511,3512,3513,3514,3515,3516,3517,3518,3519,3520,3521,3522,3523,3524,3525,3526,3527,3528,3529,3530,3531,3532,3533,3534,3535,3536,3537,3538,3539,3540,3541,3542,3543,3544,3545,3546,3547,3548,3549,3550,3551,3552,3553,3554,3555,3556,3557,3558,3559,3560,3561,3562,3563,3564,3565,3566,3567,3568,3569,3570,3571,3572,3573,3574,3575,3576,3577,3578,3579,3580,3581,3582,3583,3584,3585,3586,3587,3588,3589,3590,3591,3592,3593,3594,3595,3596,3597,3598,3599,3600,3601,3602,3603,3604, 取融资融券数据,再等会儿~ 完成
import pickle
pkl_file = open('dfmtss.pkl', 'wb')
pickle.dump(df,pkl_file,0)
import pickle
pkl_file = open('dfmtss.pkl', 'rb')
df = pickle.load(pkl_file)
df
股票名称 | 信托 | 资产管理计划 | 资管产品 | 集合 | 关键词合计 | 融资比例 | 总合计 | |
---|---|---|---|---|---|---|---|---|
000040.XSHE | 东旭蓝天 | 35.95 | 3.52 | 0.0 | 12.54 | 52.01 | 0.58 | 52.60 |
600515.XSHG | 海航基础 | 25.30 | 0.00 | 0.0 | 25.30 | 50.59 | 3.38 | 53.97 |
000979.XSHE | 中弘股份 | 0.00 | 26.16 | 0.0 | 14.67 | 40.83 | 0.00 | 40.83 |
603399.XSHG | 吉翔股份 | 19.30 | 0.76 | 0.0 | 19.30 | 39.35 | 0.00 | 39.35 |
600432.XSHG | 退市吉恩 | 0.00 | 37.07 | 0.0 | 0.00 | 37.07 | 0.00 | 37.07 |
600811.XSHG | 东方集团 | 11.38 | 15.41 | 0.0 | 7.47 | 34.26 | 6.75 | 41.01 |
603077.XSHG | 和邦生物 | 17.32 | 0.00 | 0.0 | 15.71 | 33.03 | 0.00 | 33.03 |
000793.XSHE | 华闻传媒 | 19.59 | 6.65 | 0.0 | 6.13 | 32.37 | 13.41 | 45.78 |
002676.XSHE | 顺威股份 | 0.00 | 30.71 | 0.0 | 0.00 | 30.71 | 0.00 | 30.71 |
603003.XSHG | 龙宇燃油 | 12.26 | 3.29 | 0.0 | 14.85 | 30.40 | 0.00 | 30.40 |
000683.XSHE | 远兴能源 | 15.07 | 0.00 | 0.0 | 15.07 | 30.14 | 0.00 | 30.14 |
600410.XSHG | 华胜天成 | 13.44 | 3.73 | 0.0 | 11.98 | 29.15 | 13.72 | 42.87 |
000504.XSHE | 南华生物 | 28.80 | 0.00 | 0.0 | 0.00 | 28.80 | 0.00 | 28.80 |
002085.XSHE | 万丰奥威 | 14.25 | 0.00 | 0.0 | 14.25 | 28.51 | 1.25 | 29.76 |
600882.XSHG | 广泽股份 | 14.45 | 0.00 | 0.0 | 12.41 | 26.86 | 0.00 | 26.86 |
601928.XSHG | 凤凰传媒 | 26.72 | 0.00 | 0.0 | 0.00 | 26.72 | 2.16 | 28.88 |
002630.XSHE | 华西能源 | 17.24 | 0.00 | 0.0 | 9.43 | 26.68 | 0.00 | 26.68 |
002736.XSHE | 国信证券 | 25.15 | 0.68 | 0.0 | 0.00 | 25.83 | 0.60 | 26.42 |
000576.XSHE | 广东甘化 | 12.64 | 0.00 | 0.0 | 12.64 | 25.29 | 0.00 | 25.29 |
002240.XSHE | 威华股份 | 11.99 | 1.21 | 0.0 | 11.99 | 25.18 | 0.00 | 25.18 |
600978.XSHG | 宜华生活 | 11.33 | 1.18 | 0.0 | 12.51 | 25.02 | 11.86 | 36.88 |
600177.XSHG | 雅戈尔 | 12.33 | 0.00 | 0.0 | 12.33 | 24.66 | 3.53 | 28.19 |
000566.XSHE | 海南海药 | 20.17 | 0.00 | 0.0 | 3.78 | 23.96 | 0.00 | 23.96 |
002042.XSHE | 华孚时尚 | 16.59 | 2.00 | 0.0 | 4.07 | 22.65 | 2.81 | 25.46 |
000939.XSHE | *ST凯迪 | 12.22 | 2.71 | 0.0 | 7.63 | 22.56 | 0.00 | 22.56 |
002193.XSHE | 如意集团 | 15.85 | 0.00 | 0.0 | 6.66 | 22.51 | 0.00 | 22.51 |
002712.XSHE | 思美传媒 | 11.17 | 0.00 | 0.0 | 11.17 | 22.35 | 0.00 | 22.35 |
002199.XSHE | 东晶电子 | 22.20 | 0.00 | 0.0 | 0.00 | 22.20 | 0.00 | 22.20 |
002313.XSHE | 日海智能 | 11.06 | 0.00 | 0.0 | 11.06 | 22.12 | 13.01 | 35.14 |
002519.XSHE | 银河电子 | 11.04 | 0.00 | 0.0 | 11.04 | 22.09 | 0.00 | 22.09 |
... | ... | ... | ... | ... | ... | ... | ... | ... |
300189.XSHE | 神农基因 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300191.XSHE | 潜能恒信 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 9.19 | 9.19 |
300192.XSHE | 科斯伍德 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300193.XSHE | 佳士科技 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300194.XSHE | 福安药业 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300198.XSHE | 纳川股份 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300199.XSHE | 翰宇药业 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 8.74 | 8.74 |
300200.XSHE | 高盟新材 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300169.XSHE | 天晟新材 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300167.XSHE | 迪威迅 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300166.XSHE | 东方国信 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300163.XSHE | 先锋新材 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300139.XSHE | 晓程科技 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300140.XSHE | 中环装备 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300141.XSHE | 和顺电气 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300144.XSHE | 宋城演艺 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300146.XSHE | 汤臣倍健 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 2.52 | 2.52 |
300147.XSHE | 香雪制药 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 9.78 | 9.78 |
300149.XSHE | 量子生物 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300150.XSHE | 世纪瑞尔 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300151.XSHE | 昌红科技 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300152.XSHE | 科融环境 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300154.XSHE | 瑞凌股份 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300155.XSHE | 安居宝 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300156.XSHE | 神雾环保 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300157.XSHE | 恒泰艾普 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 23.77 | 23.77 |
300158.XSHE | 振东制药 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300161.XSHE | 华中数控 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
300162.XSHE | 雷曼股份 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
603999.XSHG | 读者传媒 | 0.00 | 0.00 | 0.0 | 0.00 | 0.00 | 0.00 | 0.00 |
3604 rows × 8 columns
# 按关键词
N=300
start_date='2018-01-02'
end_date='2018-10-18'
df=df.sort_values('关键词合计',ascending=False)
securities_list=list(df.index[0:N])
S0=get_price(securities_list,start_date=start_date,end_date=start_date,fields='close',fq='pre')
ST=get_price(securities_list,start_date=end_date,end_date=end_date,fields='close',fq='pre')
RetHead=(ST['close'].iloc[0,:]/S0['close'].iloc[0,:]-1).mean()
securities_list=list(df.index)
S0=get_price(securities_list,start_date=start_date,end_date=start_date,fields='close',fq='pre')
ST=get_price(securities_list,start_date=end_date,end_date=end_date,fields='close',fq='pre')
RetAll=(ST['close'].iloc[0,:]/S0['close'].iloc[0,:]-1).mean()
securities_list=list(df.index[-N:])
S0=get_price(securities_list,start_date=start_date,end_date=start_date,fields='close',fq='pre')
ST=get_price(securities_list,start_date=end_date,end_date=end_date,fields='close',fq='pre')
RetTail=(ST['close'].iloc[0,:]/S0['close'].iloc[0,:]-1).mean()
word_result=[RetHead,RetTail,RetAll]
# 按两融
df=df.sort_values('融资比例',ascending=False)
securities_list=list(df.index[:N])
S=get_price(securities_list,start_date='2018-01-02',end_date='2018-10-18',fields='close',fq='pre')
RetHead=(S['close'].iloc[-1,:]/S['close'].iloc[0,:]-1).mean()
securities_list=list(df.index[-N:])
S=get_price(securities_list,start_date='2018-01-02',end_date='2018-10-18',fields='close',fq='pre')
RetTail=(S['close'].iloc[-1,:]/S['close'].iloc[0,:]-1).mean()
securities_list=list(df.index)
S=get_price(securities_list,start_date='2018-01-02',end_date='2018-10-18',fields='close',fq='pre')
RetAll=(S['close'].iloc[-1,:]/S['close'].iloc[0,:]-1).mean()
mtss_result=[RetHead,RetTail,RetAll]
# 按总合计
df=df.sort_values('总合计',ascending=False)
securities_list=list(df.index[:N])
S=get_price(securities_list,start_date='2018-01-02',end_date='2018-10-18',fields='close',fq='pre')
RetHead=(S['close'].iloc[-1,:]/S['close'].iloc[0,:]-1).mean()
securities_list=list(df.index[-N:])
S=get_price(securities_list,start_date='2018-01-02',end_date='2018-10-18',fields='close',fq='pre')
RetTail=(S['close'].iloc[-1,:]/S['close'].iloc[0,:]-1).mean()
securities_list=list(df.index)
S=get_price(securities_list,start_date='2018-01-02',end_date='2018-10-18',fields='close',fq='pre')
RetAll=(S['close'].iloc[-1,:]/S['close'].iloc[0,:]-1).mean()
total_result=[RetHead,RetTail,RetAll]
result=[word_result,mtss_result,total_result]
import pandas as pd
result_df=pd.DataFrame(result,index=['关键词','融资比例','总合计'],columns=['Head','Tail','All'])
result_df
Head | Tail | All | |
---|---|---|---|
关键词 | -0.412412 | -0.354977 | -0.367917 |
融资比例 | -0.442642 | -0.366021 | -0.367917 |
总合计 | -0.424130 | -0.386676 | -0.367917 |
# 查查国家队
word_list=['中国证券金融']
stock_list=get_index_stocks('000300.XSHG')
df=get_ratio_table(word_list,stock_list).sort_values('关键词合计',ascending=False)
# 方便起见
name=[get_security_info(i).display_name for i in df.index]
df['股票名称']=name
一共有 300 股票,你就等吧 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,
df
中国证券金融 | 关键词合计 | 股票名称 | |
---|---|---|---|
600177.XSHG | 5.009 | 5.009 | 雅戈尔 |
600637.XSHG | 4.991 | 4.991 | 东方明珠 |
600089.XSHG | 4.904 | 4.904 | 特变电工 |
600585.XSHG | 4.901 | 4.901 | 海螺水泥 |
600271.XSHG | 4.901 | 4.901 | 航天信息 |
601618.XSHG | 4.900 | 4.900 | 中国中冶 |
600170.XSHG | 4.900 | 4.900 | 上海建工 |
600153.XSHG | 4.900 | 4.900 | 建发股份 |
600066.XSHG | 4.900 | 4.900 | 宇通客车 |
600837.XSHG | 4.900 | 4.900 | 海通证券 |
601788.XSHG | 4.900 | 4.900 | 光大证券 |
601766.XSHG | 4.900 | 4.900 | 中国中车 |
600886.XSHG | 4.900 | 4.900 | 国投电力 |
600109.XSHG | 4.900 | 4.900 | 国金证券 |
601669.XSHG | 4.900 | 4.900 | 中国电建 |
600958.XSHG | 4.900 | 4.900 | 东方证券 |
600415.XSHG | 4.900 | 4.900 | 小商品城 |
601607.XSHG | 4.900 | 4.900 | 上海医药 |
600795.XSHG | 4.900 | 4.900 | 国电电力 |
600023.XSHG | 4.900 | 4.900 | 浙能电力 |
601390.XSHG | 4.900 | 4.900 | 中国中铁 |
601377.XSHG | 4.900 | 4.900 | 兴业证券 |
601006.XSHG | 4.900 | 4.900 | 大秦铁路 |
601216.XSHG | 4.900 | 4.900 | 君正集团 |
601211.XSHG | 4.900 | 4.900 | 国泰君安 |
601198.XSHG | 4.900 | 4.900 | 东兴证券 |
601009.XSHG | 4.900 | 4.900 | 南京银行 |
601186.XSHG | 4.900 | 4.900 | 中国铁建 |
601169.XSHG | 4.900 | 4.900 | 北京银行 |
600068.XSHG | 4.900 | 4.900 | 葛洲坝 |
... | ... | ... | ... |
600739.XSHG | 0.000 | 0.000 | 辽宁成大 |
002925.XSHE | 0.000 | 0.000 | 盈趣科技 |
002456.XSHE | 0.000 | 0.000 | 欧菲科技 |
002460.XSHE | 0.000 | 0.000 | 赣锋锂业 |
002468.XSHE | 0.000 | 0.000 | 申通快递 |
600352.XSHG | 0.000 | 0.000 | 浙江龙盛 |
601108.XSHG | 0.000 | 0.000 | 财通证券 |
002493.XSHE | 0.000 | 0.000 | 荣盛石化 |
002500.XSHE | 0.000 | 0.000 | 山西证券 |
002508.XSHE | 0.000 | 0.000 | 老板电器 |
002555.XSHE | 0.000 | 0.000 | 三七互娱 |
601012.XSHG | 0.000 | 0.000 | 隆基股份 |
002558.XSHE | 0.000 | 0.000 | 巨人网络 |
002572.XSHE | 0.000 | 0.000 | 索菲亚 |
002594.XSHE | 0.000 | 0.000 | 比亚迪 |
002601.XSHE | 0.000 | 0.000 | 龙蟒佰利 |
002602.XSHE | 0.000 | 0.000 | 世纪华通 |
002608.XSHE | 0.000 | 0.000 | 江苏国信 |
600926.XSHG | 0.000 | 0.000 | 杭州银行 |
600909.XSHG | 0.000 | 0.000 | 华安证券 |
002624.XSHE | 0.000 | 0.000 | 完美世界 |
002625.XSHE | 0.000 | 0.000 | 光启技术 |
002673.XSHE | 0.000 | 0.000 | 西部证券 |
600867.XSHG | 0.000 | 0.000 | 通化东宝 |
002714.XSHE | 0.000 | 0.000 | 牧原股份 |
600820.XSHG | 0.000 | 0.000 | 隧道股份 |
600809.XSHG | 0.000 | 0.000 | 山西汾酒 |
002739.XSHE | 0.000 | 0.000 | 万达电影 |
002797.XSHE | 0.000 | 0.000 | 第一创业 |
603993.XSHG | 0.000 | 0.000 | 洛阳钼业 |
300 rows × 3 columns
本社区仅针对特定人员开放
查看需注册登录并通过风险意识测评
5秒后跳转登录页面...
移动端课程